Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
-
Peter Danchev
pvdanchev@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100005Abstract
Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is finite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).
Keywords
Most read articles by the same author(s)
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
Similar Articles
- Syouji Yano, On the Index of Clifford Algebras of Quadratic Forms , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Josefina Alvarez, Hamed M. Obiedat, Characterizations of the Schwartz Space and the Beurling-Björck Space ð”–ω , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Ana Fuenzalida, Alicia Labra, Cristian Mallol, On Quasi orthogonal Bernstein Jordan algebras , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Iris A. López, On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Mohadeseh Rostamani, Shirin Hejazian, Maps preserving Fredholm or semi-Fredholm elements relative to some ideal , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Mihai Prunescu, Concrete algebraic cohomology for the group (â„, +) or how to solve the functional equation ð‘“(ð‘¥+ð‘¦) - ð‘“(ð‘¥) - ð‘“(ð‘¦) = ð‘”(ð‘¥, ð‘¦) , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Augustin Banyaga, Symplectic geometry and related structures , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.