Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
-
Peter Danchev
pvdanchev@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100005Abstract
Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is finite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).
Keywords
Most read articles by the same author(s)
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
Similar Articles
- Augustin Banyaga, Symplectic geometry and related structures , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Edward L. Cohen, Calendars of the Dead-Sea-Scroll Sect , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Andrei Gagarin, William Kocay, Daniel Neilson, Embeddings of Small Graphs on the Torus , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- D. Ebrahimi Bagha, M. Amini, Module amenability for Banach modules , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Philip J. Maher, Mohammad Sal Moslehian, More on approximate operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
You may also start an advanced similarity search for this article.