Generalized spectrograms and Ï„-Wigner transforms
-
Boggiatto Paolo
paolo.boggiatto@unito.it
-
De Donno Giuseppe
giuseppe.dedonno@unito.it
-
Oliaro Alessandro
alessandro.oliaro@unito.it
-
Bui Kien Cuong
buikiencuong@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000300011Abstract
We consider in this paper Wigner type representations WigÏ„ depending on a parameter Ï„ ∈ [0,1] as defined in [2]. We prove that the Cohen class can be characterized in terms of the convolution of such WigÏ„ with a tempered distribution. We introduce furthermore a class of “quadratic representations” SpÏ„ based on the Ï„-Wigner, as an extension of the two window Spectrogram (see [2]). We give basic properties of SpÏ„ as subclasses of the general Cohen class.
Keywords
Similar Articles
- Shing So, Recent Developments in Taxicab Geometry , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- S. Richard, R. Tiedra de Aldecoa, Commutator criteria for strong mixing II. More general and simpler , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- U. Traoré, Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Rajendra Prasad, Mehmet Akif Akyol, Sushil Kumar, Punit Kumar Singh, Quasi bi-slant submersions in contact geometry , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.











