Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition
-
Théodore K. Boni
theokboni@yahoo.fr
-
Diabaté Nabongo
nabongo_diabate@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100004Abstract
In this paper, under some conditions, we show that the solution of a discrete form of a nonlocal parabolic problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some computational results to illustrate our analysis.
Keywords
Similar Articles
- Vladimir V'yugin, Victor Maslov, Algorithmic complexity and statistical mechanics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Cheok Choi, Gen Nakamura, Kenji Shirota, Variational approach for identifying a coefficient of the wave equation , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Mekki Hammi, Mohamed Ali Hammami, Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- M.O Korpusov, A. G. Sveschnikov, On blowing-up of solutions of Sobolev-type equation with source , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Michael J. Mezzino, Numerical Solutions of Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Roberto Dieci, Gian-Italo Bishi, Laura Gardini, Routes to Complexity in a Macroeconomic Model Described by a Noninvertible Triangular Map , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Andrew Engel, International Fishing as Dynamic Oligopoly with Time Delay , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Laszlo Kapolyi, Ferenc Szidarovszki, Control of Dynamic Oligopsonies with Production factors , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Gian-Italo Bischi, Michael Kopel, Long Run Evolution, Path Dependence and Global Properties of Dynamic Games: A Tutorial , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2010-03-01
How to Cite
[1]
T. K. Boni and D. Nabongo, “Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition”, CUBO, vol. 12, no. 1, pp. 23–40, Mar. 2010.
Issue
Section
Articles