Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition
-
Théodore K. Boni
theokboni@yahoo.fr
-
Diabaté Nabongo
nabongo_diabate@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100004Abstract
In this paper, under some conditions, we show that the solution of a discrete form of a nonlocal parabolic problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some computational results to illustrate our analysis.
Keywords
Similar Articles
- Mouffak Benchohra, Fatima-Zohra Mostefai, Weak Solutions of Fractional Order Pettis Integral Inclusions with Multiple Time Delay in Banach Spaces , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Manuel Saavedra, Helmuth Villavicencio, On the minimum ergodic average and minimal systems , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Elena I. Kaikina, Leonardo Guardado-Zavala, Hector F. Ruiz-Paredes, S. Juarez Zirate, Korteweg-de Vries-Burgers equation on a segment , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2010-03-01
How to Cite
[1]
T. K. Boni and D. Nabongo, “Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition”, CUBO, vol. 12, no. 1, pp. 23–40, Mar. 2010.
Issue
Section
Articles