Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition
-
Théodore K. Boni
theokboni@yahoo.fr
-
Diabaté Nabongo
nabongo_diabate@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100004Abstract
In this paper, under some conditions, we show that the solution of a discrete form of a nonlocal parabolic problem quenches in a finite time and estimate its numerical quenching time. We also prove that the numerical quenching time converges to the real one when the mesh size goes to zero. Finally, we give some computational results to illustrate our analysis.
Keywords
Similar Articles
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Shunsuke Kaji, The Extension of the Formula by Dupire , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2010-03-01
How to Cite
[1]
T. K. Boni and D. Nabongo, “Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition”, CUBO, vol. 12, no. 1, pp. 23–40, Mar. 2010.
Issue
Section
Articles











