Discrete Clifford analysis: an overview
-
Fred Brackx
Freddy.Brackx@UGent.be
-
Hennie De Schepper
Freddy.Brackx@UGent.be
-
Frank Sommen
Freddy.Brackx@UGent.be
-
Liesbet Van de Voorde
Freddy.Brackx@UGent.be
Downloads
Abstract
We give an account of our current research results in the development of a higher dimensional discrete function theory in a Clifford algebra context. On the simplest of all graphs, the rectangular ℤm grid, the concept of a discrete monogenic function is introduced. To this end new Clifford bases, involving so–called forward and backward basis vectors and introduced by means of their underlying metric, are controlling the support of the involved operators. As our discrete Dirac operator is seen to square up to a mixed discrete Laplacian, the resulting function theory may be interpreted as a refinement of discrete harmonic analysis. After a proper definition of some topological concepts, function theoretic results amongst which Cauchy‘s theorem and a Cauchy integral formula are obtained. Finally a first attempt is made at creating a general model for the Clifford bases used, involving geometrically interpretable curvature vectors.
Keywords
Most read articles by the same author(s)
- Helmuth R. Malonek, Dixan Peña, Frank Sommen, Fischer decomposition by inframonogenic functions , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
Similar Articles
- Bach Do, G. Stacey Staples, Zeros of cubic polynomials in zeon algebra , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Terje Hill, David A. Robbins, Vector-valued algebras and variants of amenability , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Zahoor Ahmad Rather, Rais Ahmad, Inertial viscosity Mann-type subgradient extragradient algorithms for solving variational inequality and fixed point problems in real Hilbert spaces , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.










