Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method)
-
M.I. Belishev
belishev@pdmi.ras.ru
Downloads
Abstract
A dynamical system of the form
ð‘¢tt − Δ𑢠− ∇ln𜌠· ∇𑢠= 0, in â„ð‘›+ × (0, ð‘‡)
ð‘¢|t=0 = ð‘¢t|t=0|= 0, in â„ð‘›+
ð‘¢xð‘› = f on Ï‘â„ð‘›+ × (0, ð‘‡),
is considered, where â„ð‘›+ := {x = {x1, . . . , xð‘›}| xð‘› > 0} ; 𜌠= ðœŒ(x) is a smooth positive function (density) such that ðœŒ, 1/𜌠are bounded in â„ð‘›+; f is a (Neumann) boundary control of the class L2(Ï‘â„ð‘›+ × [0, ð‘‡]); ð‘¢ = ð‘¢f (x, t) is a solution (wave). With the system one associates a response operator RT : f ⟼ ð‘¢f|Ï‘â„ð‘›+ × [0, ð‘‡]. A dynamical inverse problem is to determine the density from the given response operator.
Fix an open subset 𜎠⊂ Ï‘â„ð‘›+; let L2(ðœŽ × [0, ð‘‡]) be the subspace of controls supported on ðœŽ. A partial response operator RT𜎠acts in this subspace by the rule RT𜎠f = ð‘¢f|ðœŽ×[0,T]; let R2T𜎠be the operator corresponding to the same system considered on the doubled time interval [0, 2T]. Denote BT𜎠:= {x ∈ â„ð‘›+|{x1, . . . , xð‘›-1,0} ∈ ðœŽ, 0 < xð‘› < T} and assume ðœŒ|𜎠to be known. We show that R2T𜎠determines ðœŒ|BT𜎠and propose an efficient procedure recovering the density. The procedure is available for constructing numerical algorithms.
The instrument for solving the problem is the boundary control method which is an approach to inverse problems based on their relations with control theory (Belishev, 1986). Our presentation is elementary and can serve as introduction to the BC method.
Keywords
Most read articles by the same author(s)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
Similar Articles
- Oscar Rojo J., Ricardo Soto, On the construction of Jacobi matrices from spectral data , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Monique Combescure, Circulant Matrices, Gauss Sums and Mutually Unbiased Bases, I. The Prime Number Case , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Tingxiu Wang, Some General Theorems on Uniform Boundedness for Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Haiyan Qiao, Brandon Edwards, A General Purpose Platform for Data Clustering Analysis , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Adrian Petrus¸el, Ioan A. Rus, Marcel Adrian S¸erban, Fixed Points for Operators on Generalized Metric Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, A sufficiently complicated noded Schottky group of rank three , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
<< < 9 10 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.