Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method)
-
M.I. Belishev
belishev@pdmi.ras.ru
Downloads
Abstract
A dynamical system of the form
ð‘¢tt − Δ𑢠− ∇ln𜌠· ∇𑢠= 0, in â„ð‘›+ × (0, ð‘‡)
ð‘¢|t=0 = ð‘¢t|t=0|= 0, in â„ð‘›+
ð‘¢xð‘› = f on Ï‘â„ð‘›+ × (0, ð‘‡),
is considered, where â„ð‘›+ := {x = {x1, . . . , xð‘›}| xð‘› > 0} ; 𜌠= ðœŒ(x) is a smooth positive function (density) such that ðœŒ, 1/𜌠are bounded in â„ð‘›+; f is a (Neumann) boundary control of the class L2(Ï‘â„ð‘›+ × [0, ð‘‡]); ð‘¢ = ð‘¢f (x, t) is a solution (wave). With the system one associates a response operator RT : f ⟼ ð‘¢f|Ï‘â„ð‘›+ × [0, ð‘‡]. A dynamical inverse problem is to determine the density from the given response operator.
Fix an open subset 𜎠⊂ Ï‘â„ð‘›+; let L2(ðœŽ × [0, ð‘‡]) be the subspace of controls supported on ðœŽ. A partial response operator RT𜎠acts in this subspace by the rule RT𜎠f = ð‘¢f|ðœŽ×[0,T]; let R2T𜎠be the operator corresponding to the same system considered on the doubled time interval [0, 2T]. Denote BT𜎠:= {x ∈ â„ð‘›+|{x1, . . . , xð‘›-1,0} ∈ ðœŽ, 0 < xð‘› < T} and assume ðœŒ|𜎠to be known. We show that R2T𜎠determines ðœŒ|BT𜎠and propose an efficient procedure recovering the density. The procedure is available for constructing numerical algorithms.
The instrument for solving the problem is the boundary control method which is an approach to inverse problems based on their relations with control theory (Belishev, 1986). Our presentation is elementary and can serve as introduction to the BC method.
Keywords
Most read articles by the same author(s)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
Similar Articles
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Wolfgang Spr¨ossig, Quaternionic analysis and Maxwell‘s equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Michael J. Mezzino, Numerical Solutions of Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Wolfgang Sproessig, Le Thu Hoai, On a new notion of holomorphy and its applications , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- H. O. Fattorini, Sufficiency of the maximum principle for time optimality , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
<< < 7 8 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.