Sufficiency of the maximum principle for time optimality
-
H. O. Fattorini
hof@math.ucla.edu
Downloads
Abstract
For infinite dimensional linear systems, Pontryagin‘s maximum principle is shown to be sufficient for time optimality with conditions on the initial condition and on the target. These conditions cannot be given up and are shown to be best possible by means of counter examples.
Keywords
Most read articles by the same author(s)
- H. O. Fattorini, Regular and Strongly Regular Time and Norm Optimal Controls , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
Similar Articles
- Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: In Press
- Paolo D‘alessandro, An immediate derivation of maximum principle in Banach spaces, assuming reflexive input and state spaces , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- H. O. Fattorini, Regular and Strongly Regular Time and Norm Optimal Controls , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Paolo D‘alessandro, Closure of pointed cones and maximum principle in Hilbert spaces , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Ajay Kumar, Ekta Tamrakar, Inertial algorithm for solving split inclusion problem in Banach spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- l. M. Proudnikov, Construction of a stabilizing control and solution to a problem about the center and the focus for differential systems with a polynomial part on the right side , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2005-12-01
How to Cite
[1]
H. O. Fattorini, “Sufficiency of the maximum principle for time optimality”, CUBO, vol. 7, no. 3, pp. 27–37, Dec. 2005.
Issue
Section
Articles











