Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method)
-
M.I. Belishev
belishev@pdmi.ras.ru
Downloads
Abstract
A dynamical system of the form
ð‘¢tt − Δ𑢠− ∇ln𜌠· ∇𑢠= 0, in â„ð‘›+ × (0, ð‘‡)
ð‘¢|t=0 = ð‘¢t|t=0|= 0, in â„ð‘›+
ð‘¢xð‘› = f on Ï‘â„ð‘›+ × (0, ð‘‡),
is considered, where â„ð‘›+ := {x = {x1, . . . , xð‘›}| xð‘› > 0} ; 𜌠= ðœŒ(x) is a smooth positive function (density) such that ðœŒ, 1/𜌠are bounded in â„ð‘›+; f is a (Neumann) boundary control of the class L2(Ï‘â„ð‘›+ × [0, ð‘‡]); ð‘¢ = ð‘¢f (x, t) is a solution (wave). With the system one associates a response operator RT : f ⟼ ð‘¢f|Ï‘â„ð‘›+ × [0, ð‘‡]. A dynamical inverse problem is to determine the density from the given response operator.
Fix an open subset 𜎠⊂ Ï‘â„ð‘›+; let L2(ðœŽ × [0, ð‘‡]) be the subspace of controls supported on ðœŽ. A partial response operator RT𜎠acts in this subspace by the rule RT𜎠f = ð‘¢f|ðœŽ×[0,T]; let R2T𜎠be the operator corresponding to the same system considered on the doubled time interval [0, 2T]. Denote BT𜎠:= {x ∈ â„ð‘›+|{x1, . . . , xð‘›-1,0} ∈ ðœŽ, 0 < xð‘› < T} and assume ðœŒ|𜎠to be known. We show that R2T𜎠determines ðœŒ|BT𜎠and propose an efficient procedure recovering the density. The procedure is available for constructing numerical algorithms.
The instrument for solving the problem is the boundary control method which is an approach to inverse problems based on their relations with control theory (Belishev, 1986). Our presentation is elementary and can serve as introduction to the BC method.
Keywords
Most read articles by the same author(s)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
Similar Articles
- Chandresh Prasad, P. K. Parida, Steffensen-like method in Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Violeta Petkova, Spectral results for operators commuting with translations on Banach spaces of sequences on Zᴷ and Z⺠, CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Stanislas Ouaro, Noufou Rabo, Urbain Traoré, Numerical analysis of nonlinear parabolic problems with variable exponent and \(L^1\) data , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











