Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method)
-
M.I. Belishev
belishev@pdmi.ras.ru
Downloads
Abstract
A dynamical system of the form
ð‘¢tt − Δ𑢠− ∇ln𜌠· ∇𑢠= 0, in â„ð‘›+ × (0, ð‘‡)
ð‘¢|t=0 = ð‘¢t|t=0|= 0, in â„ð‘›+
ð‘¢xð‘› = f on Ï‘â„ð‘›+ × (0, ð‘‡),
is considered, where â„ð‘›+ := {x = {x1, . . . , xð‘›}| xð‘› > 0} ; 𜌠= ðœŒ(x) is a smooth positive function (density) such that ðœŒ, 1/𜌠are bounded in â„ð‘›+; f is a (Neumann) boundary control of the class L2(Ï‘â„ð‘›+ × [0, ð‘‡]); ð‘¢ = ð‘¢f (x, t) is a solution (wave). With the system one associates a response operator RT : f ⟼ ð‘¢f|Ï‘â„ð‘›+ × [0, ð‘‡]. A dynamical inverse problem is to determine the density from the given response operator.
Fix an open subset 𜎠⊂ Ï‘â„ð‘›+; let L2(ðœŽ × [0, ð‘‡]) be the subspace of controls supported on ðœŽ. A partial response operator RT𜎠acts in this subspace by the rule RT𜎠f = ð‘¢f|ðœŽ×[0,T]; let R2T𜎠be the operator corresponding to the same system considered on the doubled time interval [0, 2T]. Denote BT𜎠:= {x ∈ â„ð‘›+|{x1, . . . , xð‘›-1,0} ∈ ðœŽ, 0 < xð‘› < T} and assume ðœŒ|𜎠to be known. We show that R2T𜎠determines ðœŒ|BT𜎠and propose an efficient procedure recovering the density. The procedure is available for constructing numerical algorithms.
The instrument for solving the problem is the boundary control method which is an approach to inverse problems based on their relations with control theory (Belishev, 1986). Our presentation is elementary and can serve as introduction to the BC method.
Keywords
Most read articles by the same author(s)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
Similar Articles
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Dongsheng Liu, A note on discrete monotonic dynamical systems , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Vladik Kreinovich, Engineering design under imprecise probabilities: computational complexity , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.