Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method)
-
M.I. Belishev
belishev@pdmi.ras.ru
Downloads
Abstract
A dynamical system of the form
ð‘¢tt − Δ𑢠− ∇ln𜌠· ∇𑢠= 0, in â„ð‘›+ × (0, ð‘‡)
ð‘¢|t=0 = ð‘¢t|t=0|= 0, in â„ð‘›+
ð‘¢xð‘› = f on Ï‘â„ð‘›+ × (0, ð‘‡),
is considered, where â„ð‘›+ := {x = {x1, . . . , xð‘›}| xð‘› > 0} ; 𜌠= ðœŒ(x) is a smooth positive function (density) such that ðœŒ, 1/𜌠are bounded in â„ð‘›+; f is a (Neumann) boundary control of the class L2(Ï‘â„ð‘›+ × [0, ð‘‡]); ð‘¢ = ð‘¢f (x, t) is a solution (wave). With the system one associates a response operator RT : f ⟼ ð‘¢f|Ï‘â„ð‘›+ × [0, ð‘‡]. A dynamical inverse problem is to determine the density from the given response operator.
Fix an open subset 𜎠⊂ Ï‘â„ð‘›+; let L2(ðœŽ × [0, ð‘‡]) be the subspace of controls supported on ðœŽ. A partial response operator RT𜎠acts in this subspace by the rule RT𜎠f = ð‘¢f|ðœŽ×[0,T]; let R2T𜎠be the operator corresponding to the same system considered on the doubled time interval [0, 2T]. Denote BT𜎠:= {x ∈ â„ð‘›+|{x1, . . . , xð‘›-1,0} ∈ ðœŽ, 0 < xð‘› < T} and assume ðœŒ|𜎠to be known. We show that R2T𜎠determines ðœŒ|BT𜎠and propose an efficient procedure recovering the density. The procedure is available for constructing numerical algorithms.
The instrument for solving the problem is the boundary control method which is an approach to inverse problems based on their relations with control theory (Belishev, 1986). Our presentation is elementary and can serve as introduction to the BC method.
Keywords
Most read articles by the same author(s)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
Similar Articles
- Fujisaki Masatoshi, Nonlinear semigroup associated with maximizing operator and large deviation , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- A. Leit˜ao, J.P. Zubelli, Iterative Regularization Methods for a Discrete Inverse Problem in MRI , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Saroj Panigrahi, Sandip Rout, Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Vjacheslav A. Yurko, Recovering Higher-order Differential Operators on Star-type Graphs from Spectra , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











