Numerical analysis of nonlinear parabolic problems with variable exponent and \(L^1\) data
- Stanislas Ouaro ouaro@yahoo.fr
- Noufou Rabo rabonouf@gmail.com
- Urbain Traoré urbain.traore@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0187Abstract
In this paper, we make the numerical analysis of the mild solution which is also an entropy solution of parabolic problem involving the \(p(x)-\)Laplacian operator with \(L^1-\) data.
Keywords
S. N. Antontsev and S. I. Shmarev, “A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions”, Nonlinear Anal., vol. 60, no. 3, pp. 515–545, 2005. DOI: https://doi.org/10.1016/s0362-546x(04)00393-1
S. N. Antontsev and V. Zhikov, “Higher integrability for parabolic equations of p(x, t)- Laplacian type”, Adv. Differential Equations, vol. 10, no. 9, pp. 1053–1080, 2005.
M. Bendahmane, K. H. Karlsen and M. Saad, “Nonlinear anisotropic elliptic and parabolic equations with variable exponents and L1 data”, Commun. Pure Appl. Anal., vol. 12, no. 3, pp. 1201–1220, 2013. DOI: https://doi.org/10.3934/cpaa.2013.12.1201
M. Bendahmane and P. Wittbold and A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1−data”, J. Differential Equations, vol. 249, no. 6, pp. 1483–1515, 2010. DOI: https://doi.org/10.1016/j.jde.2010.05.011
Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, “An L1- theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 22, no. 2, pp. 241–273, 1995.
Ph. Bénilan and M. G. Crandall and A. Pazy, Evolution equations governed by accretive operators, unpublished book.
A. E. Berger, H. Brézis and J. C. W. Rogers, “A numerical method for solving the problem ut − ∆f (u) = 0, RAIRO Anal. Numér., vol. 13, no. 4, pp. 297–312, 1979. DOI: https://doi.org/10.1051/m2an/1979130402971
L. C. Berselli, D. Breit and L. Diening, “Convergence analysis for a finite element approximation of a steady model for electrorheological fluids”, Numer. Math., vol. 132, no. 4, pp. 657–689, 2016.
D. Blanchard and F. Murat, “Renormalised solutions of nonlinear parabolic problems with L1−data: existence and uniqueness”, Proc. Roy. Soc. Edinburgh Sect. A, vol. 127, no. 6, pp. 1137–1152, 1997.
D. Breit and L. Diening and S. Schwarzacher, “Finite element approximation of the p(·)- Laplacian”, SIAM J. Numer. Anal., vol. 53, no. 1, pp. 551–572, 2015.
D. Breit and P. R. Mensah, “Space-time approximation of parabolic systems with variable growth”, IMA J. Numer. Anal., vol. 40, no. 4, pp. 2505–2552, 2020.
M. Caliari and S. Zuccher, “The inverse power method for the p(x)-Laplacian problem”, J. Sci. Comput., vol. 65, no. 2, pp. 698–714, 2015.
M. Caliari and S. Zuccher, “Quasi-Newton minimization for the p(x)-Laplacian problem”, J. Comput. Appl. Math., vol. 309, pp. 122–131, 2017.
Y. Chen, S. Levine and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., vol. 66, no. 4, pp. 1383–1406, 2006.
L. Diening, P. Harjulehto, P. Hästö and M. RůžiÄka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Heidelberg: Springer, 2011.
L. Diening, P. Nägele and M. RůžiÄka, “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex Var. Elliptic Equ., vol. 57, no. 11, pp. 1209–1231, 2012.
Z. Dou, K. Gao, B. Zhang, X. Yu, L. Han and Z. Zhu, “Realistic image rendition using a variable exponent functional model for retinex”, Sensors, vol. 16, no. 6, 16 pages, 2016.
W. Jäger and J. KaÄur, “Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes”, RAIRO Modél. Math. Anal. Numér., vol. 29, no. 5, pp. 605–627, 1995.
F. Karami, K. Sadik and L. Ziad, “A variable exponent nonlocal p(x)-Laplacian equation for image restoration”, Comput. Math. Appl., vol. 75, no. 2, pp. 534–546, 2018.
J. KaÄur, “Solution of some free boundary problems by relaxation schemes”, SIAM J. Numer. Anal., vol. 36, no. 1, pp. 290–316, 1999.
O. KováÄik and J. Rákosník, “On spaces Lp(x) and Wk, p(x)”, Czechoslovak Math. J., vol. 41, no. 4, pp. 592–618, 1991.
E. Magenes, R. H. Nochetto and C. Verdi, “Energy error estimates for a linear scheme to approximate nonlinear parabolic problems”, RAIRO Modél. Math. Anal. Numér., vol. 21, no. 4, pp. 655–678, 1987.
E. Maitre, “Numerical analysis of nonlinear elliptic-parabolic equations”, M2AN Math. Model. Numer. Anal., vol. 36, no. 1, pp. 143–153, 2002.
S. Ouaro and A. Ouédraogo, “Nonlinear parabolic problems with variable exponent and L1−data”, Electron. J. Differential Equations, Paper No. 32, 32 pages, 2017.
S. Ouaro and S. Traoré, “Existence and uniqueness of entropy solutions to nonlinear elliptic problems with variable growth”, Int. J. Evol. Equ., vol. 4, no. 4, pp. 451–471, 2010.
L. M. Del Pezzo, A. L. Lombardi and S. Martínez, “Interior penalty discontinuous Galerkin FEM for the p(x)-Laplacian”, SIAM J. Numer. Anal., vol. 50, no. 5, pp. 2497–2521, 2012.
M. RůžiÄka, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, vol. 1748, Berlin: Springer-Verlag, 2000.
V. D. Rădulescu and D. D. Repovš, Partial differential equations with variable exponents, Monographs and Research Notes in Mathematics, Boca Raton: CRC Press, 2015.
C. Zhang and S. Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data”, J. Differential Equations, vol. 248, no. 6, pp. 1376–1400, 2010.
V. V. Zhikov, “On the density of smooth functions in Sobolev-Orlicz spaces”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 310, pp. 67–81, 2004.
Most read articles by the same author(s)
- Stanislas Ouaro, Noufou Sawadogo, Nonlinear elliptic \(p(u)-\) Laplacian problem with Fourier boundary condition , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Stanislas Ouaro, Weak and entropy solutions for a class of nonlinear inhomogeneous Neumann boundary value problem with variable exponent , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Stanislas Ouaro, Well-Posedness results for anisotropic nonlinear elliptic equations with variable exponent and 𘓹 -data , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
Similar Articles
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- U. Traoré, Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Stanislas Ouaro, Well-Posedness results for anisotropic nonlinear elliptic equations with variable exponent and 𘓹 -data , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Stanislas Ouaro, Weak and entropy solutions for a class of nonlinear inhomogeneous Neumann boundary value problem with variable exponent , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 S. Ouaro et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.