Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents

Downloads

DOI:

https://doi.org/10.4067/S0719-06462017000300043

Abstract

In this paper, we prove the existence of weak homoclinic solutions for discrete nonlinear problems of Kirchhoff type. The proof of the main result is based on a minimization method. As extension, we prove the existence result of weak homoclinic solutions for more general data depending on the solutions.

  • Aboudramane Guiro Laboratoire de Mathématiques et Informatique (LAMI) - UFR, Sciences et Techniques, Université Nazi BONI 01 BP 1091 Bobo-Dioulasso, 01 Bobo Dioulasso, Burkina Faso.
  • Idrissa Ibrango UFR. Sciences Exactes et Appliques, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso.
  • Stanislas Ouaro UFR. Sciences Exactes et Appliques, Universit Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso.
  • Pages: 43–55
  • Date Published: 2017-10-01
  • Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal

Most read articles by the same author(s)

Downloads

Download data is not yet available.

Published

2017-10-01

How to Cite

[1]
A. Guiro, I. Ibrango, and S. Ouaro, “Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents”, CUBO, vol. 19, no. 3, pp. 43–55, Oct. 2017.

Most read articles by the same author(s)