Wave Front Sets Singularities of Homogeneous Sub-Riemannian Three Dimensional Manifolds
-
V´Ä±ctor Ayala
vayala@ucn.cl
-
Marcos M. Diniz
mdiniz@ufpa.br
-
Jos´e C.P. Lima
pojo@ufpa.br
-
Jos´e M.M. Veloso
veloso@ufpa.br
-
Ivan Tribuzy
argo@ufam.br
Downloads
Abstract
A graphic study of wave front sets of exponential sub-Riemannian maps is performed for homogeneous three dimensional sub-Riemannian manifolds. We verify that depending on dimension of the sub-Riemannian isometry group of the manifold, the first singularities of wave front sets are of two types. If the group is four dimensional, the singularity is a conjugate point. If the group is three dimensional, there are two conjugate points and the wave front set intersects along a segment which connects both points.
Keywords
Similar Articles
- M. Caldas, E. Hatir, S. Jafari, T. Noiri, A New Kupka Type Continuity, λ-Compactness and Multifunctions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Svetlin Georgiev, Mohamed Majdoub, Two nonnegative solutions for two-dimensional nonlinear wave equations , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Jan Andres, Karel Pastor, Pavla Snyrychov´a, Simple Fixed Point Theorems on Linear Continua , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Mircea Balaj, Donal O‘Regan, An Intersection Theorem and its Applications , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Francisco Brito, Many-Ended Complete Minimal Surfaces Between Two Parallel Planes in ℳ , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.