Quaternionic analysis and Maxwell‘s equations
-
Wolfgang Spr¨ossig
sproessig@math.tu-freiberg.de
Downloads
Abstract
Methods of quaternionic analysis are used to obtain solutions of Maxwell‘ s equations. By the help of time-discretisation Maxwell‘s equations are reduced to an equation of Yukawa type. Initial value and boundary value conditions are realized by a representation formula in each time step. Approximation and stability is proved.
Keywords
Similar Articles
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Youssef N. Raffoul, Ernest Yankson, Positive periodic solutions of functional discrete systems with a parameter , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- A. Kaboré, S. Ouaro, Anisotropic problem with non-local boundary conditions and measure data , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.











