An introduction to the Fractional Fourier Transform and friends
-
A. Bultheel
Adhemar.Bultheel@cs.kuleuven.ac.be
-
H. Mart´Ä±nez
hmartine@uneg.edu.ve
Downloads
Abstract
In this survey paper we introduce the reader to the notion of the fractional Fourier transform, which may be considered as a fractional power of the classical Fourier transform. It has been intensely studied during the last decade, an attention it may have partially gained because of the vivid interest in timefrequency analysis methods of signal processing, like wavelets. Like the complex exponentials are the basic functions in Fourier analysis, the chirps (signals sweeping through all frequencies in a certain interval) are the building blocks in the fractional Fourier analysis. Part of its roots can be found in optics and mechanics. We give an introduction to the definition, the properties and approaches to the continuous fractional Fourier transform.
Keywords
Similar Articles
- Philip J. Maher, Mohammad Sal Moslehian, More on approximate operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Toka Diagana, Ahmed Mohamed, Pseudo-almost automorphic solutions to some second-order differential equations , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Sorin G. Gal, Remarks on the generation of semigroups of nonlinear operators on p-Fréchet spaces, 0 < p < 1 , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Thomas Blesgen, Two-Phase Structures as Singular Limit of a one-dimensional Discrete Model , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- F. Brackx, R. Delanghe, F. Sommen, Differential Forms and/or Multi-vector Functions , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Roberto Riquelme Sepúlveda, Análisis armónico sobre \(\operatorname{Sl}\)\((2, \Omega)\), \(\Omega\) cuerpo \(p\)-ádico (\(p\neq 2\)) , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Abderemane Morame, Françoise Truc, Accuracy on eigenvalues for a Schrödinger operator with a degenerate potential in the semi-classical limit , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Laurent Amour, Benoit Grébert, Jean-Claude Guillot, A mathematical model for the Fermi weak interactions , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.