A Restricted Additive Schwarz Preconditioner with Harmonic Overlap for Symmetric Positive Definite Linear Systems
-
Xiao-Chuan Cai
cai@cs.colorado.edu
-
Maksymilian Dryja
dryja@mimuw.edu.pl
-
Marcus Sarkis
msarkis@wpi.edu
Downloads
Abstract
A restricted additive Schwarz (RAS) preconditioning technique was introduced recently for solving general nonsymmetric sparse linear systems. In this paper, we provide an extension of RAS for symmetric positive definite problems using the so-called harmonic overlaps (RASHO). Both RAS and RASHO outperform their counterparts of the classical additive Schwarz variants (AS). The design of RASHO is based on a much deeper understanding of the behavior of Schwarz type methods in overlapping subregions, and in the construction of the overlap. In RASHO, the overlap is obtained by extending the nonoverlapping subdomains only in the directions that do not cut the boundaries of other subdomains, and all functions are made harmonic in the overlapping regions. As a result, the subdomain problems in RASHO are smaller than that of AS, and the communication cost is also smaller when implemented on distributed memory computers, since the right-hand sides of discrete harmonic systems are always zero that do not need to be communicated. We also show numerically that RASHO preconditioned CG takes fewer number of iterations than the corresponding AS preconditioned CG. A nearly optimal theory is included for the convergence of RASHO/CG for solving elliptic problems discretized with a finite element method.
Keywords
Similar Articles
- Juan A. Gatica, Fixed Point Theorems with Applications to Differential Equations , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Vjacheslav A. Yurko, Recovering Higher-order Differential Operators on Star-type Graphs from Spectra , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Constantin Corduneanu, Some special classes of neutral functional differential equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Hassan Sedaghat, Global Attractivity, Oscillations and Chaos in A Class of Nonlinear, Second Order Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Paul W. Eloe, Positive Operators and Maximum Principles for Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Frederico Furtado, Felipe Pereira, On the Scale Up Problem for Two-Phase Flow in Petroleum Reservoirs , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Mark A. Pinsky, Asymptotic Solutions of Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.