Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (ð‘™ð‘ð‘ )ð‘›âˆ’manifolds
-
S. K. Yadav
prof_sky16@yahoo.com
-
S. K. Chaubey
sudhakar.chaubey@shct.edu.om
-
D. L. Suthar
dlsuthar@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462017000200033Abstract
In the context of para-contact Hausdorff geometry η−Ricci solitons and gradient Ricci solitons are considered on manifolds. We establish that on an (LCS)ð‘›âˆ’manifold (M, Ï•, ξ, η, g), the existence of an η−Ricci soliton implies that (M, g) is quasi-Einstein. We find conditions for Ricci solitons on an (LCS)ð‘›âˆ’manifold (M, Ï•, ξ, η, g) to be shrinking, steady and expanding. At the end we show examples of such manifolds with η−Ricci solitons.
Keywords
Similar Articles
- Vandana, Rajeev Budhiraja, Aliya Naaz Siddiqui Diop, Curvature properties of \(\alpha\)-cosymplectic manifolds with \(\ast\)-\(\eta\)-Ricci-Yamabe solitons , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Sunil Kumar Yadav, Abhishek Kushwaha, Dhruwa Narain, Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Pradip Majhi, Debabrata Kar, Beta-almost Ricci solitons on Sasakian 3-manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Dhruwa Narain, Sunil Yadav, On Weak concircular Symmetries of Lorentzian Concircular Structure Manifolds , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- A.A. Shaikh, C.S. Bagewadi, On ð˜•(ð‘˜)-Contact Metric Manifolds , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Venkatesha, Divyashree G., Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Sampa Pahan, \( \eta \)-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Akshay Venkatesh, R.T. Naveen Kumar, On some recurrent properties of three dimensional K-contact manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
You may also start an advanced similarity search for this article.