A mathematical model for the Fermi weak interactions
-
Laurent Amour
laurent.amour@univ-reims.fr
-
Benoit Grébert
benoit.grebert@univ-nantes.fr
-
Jean-Claude Guillot
guillot@cmapx.polytechnique.fr
Downloads
Abstract
We consider a mathematical model of the Fermi theory of weak interactions as patterned according to the well-known current-current coupling of quantum electrodynamics. We focuss on the example of the decay of the muons into electrons, positrons and neutrinos but other examples are considered in the same way. We prove that the Hamiltonian describing this model has a ground state in the fermionic Fock space for a sufficiently small coupling constant. Furthermore we determine the absolutely continuous spectrum of the Hamiltonian and by commutator estimates we prove that the spectrum is absolutely continuous away from a small neighborhood of the thresholds of the free Hamiltonian. For all these results we do not use any infrared cutoff or infrared regularization even if fermions with zero mass are involved.
Keywords
Most read articles by the same author(s)
- Laurent Amour, Jérémy Faupin, The confined hydrogenoid ion in non-relativistic quantum electrodynamics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
Similar Articles
- Bourama Toni, Planar Pseudo-almost Limit Cycles and Applications to solitary Waves , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Yuan Zhang, Zuodong Yang, Existence of Entire Solutions for Quasilinear Elliptic Systems under Keller-Osserman Condition , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Ippei Ichigi, Katsumi Shimomura, The Modulo Two Homotopy Groups of the ð¿â‚‚-Localization of the Ravenel Spectrum , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- George Venkov, Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Bernard Helffer, Xing-Bin Pan, On Some Spectral Problems and Asymptotic Limits Occuring in the Analysis of Liquid Crystals , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











