A mathematical model for the Fermi weak interactions
-
Laurent Amour
laurent.amour@univ-reims.fr
-
Benoit Grébert
benoit.grebert@univ-nantes.fr
-
Jean-Claude Guillot
guillot@cmapx.polytechnique.fr
Downloads
Abstract
We consider a mathematical model of the Fermi theory of weak interactions as patterned according to the well-known current-current coupling of quantum electrodynamics. We focuss on the example of the decay of the muons into electrons, positrons and neutrinos but other examples are considered in the same way. We prove that the Hamiltonian describing this model has a ground state in the fermionic Fock space for a sufficiently small coupling constant. Furthermore we determine the absolutely continuous spectrum of the Hamiltonian and by commutator estimates we prove that the spectrum is absolutely continuous away from a small neighborhood of the thresholds of the free Hamiltonian. For all these results we do not use any infrared cutoff or infrared regularization even if fermions with zero mass are involved.
Keywords
Most read articles by the same author(s)
- Laurent Amour, Jérémy Faupin, The confined hydrogenoid ion in non-relativistic quantum electrodynamics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
Similar Articles
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Takahiro Sudo, Continuous or Discontinuous Deformations of C*-Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- M. H. Farag, T. A. Talaat, E. M. Kamal, Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Smaïl Djebali, Ouiza Saifi, Upper and lower solutions for φ−Laplacian third-order BVPs on the half-Line , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Colette Anné, Anne-Marie Charbonnel, Bohr-Sommerfeld conditions for several commuting Hamiltonians , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











