Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º)
- 
							
								
							
								M. W. Wong
							
							
															
									
									
									mwwong@mathstat.yorku.ca
									
								
													
							
						 
Downloads
Abstract
We give a version of Erhling's inequality for Lp-Sobolev spaces Hs,p on IRn, -∞ < s < ∞, 1 ≤ p < ∞ , and use it to establish an analogue of the Agmon Douglis-Nirenberg inequality for pseudo-differential operators perturbed by singular potentials on Lp(IRn), 1 < p < ∞. Applications to essential spectra of pseudo-differentials operators and strongly continuous one-parameter semigroups generated by pseudo-differential operators on Lp(IRn), 1 < p < ∞, are given.
Keywords
Similar Articles
- Vediyappan Govindan, Choonkil Park, Sandra Pinelas, Themistocles M. Rassias, Hyers-Ulam stability of an additive-quadratic functional equation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 - Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
 - A. Kaboré, S. Ouaro, Anisotropic problem with non-local boundary conditions and measure data , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
 - Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
 - K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
 - Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
 - Edoardo Ballico, A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\) , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
 - Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
 
<< < 25 26 27 28 29 30 31 32 > >>
You may also start an advanced similarity search for this article.
						










