Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º)
-
M. W. Wong
mwwong@mathstat.yorku.ca
Downloads
Abstract
We give a version of Erhling's inequality for Lp-Sobolev spaces Hs,p on IRn, -∞ < s < ∞, 1 ≤ p < ∞ , and use it to establish an analogue of the Agmon Douglis-Nirenberg inequality for pseudo-differential operators perturbed by singular potentials on Lp(IRn), 1 < p < ∞. Applications to essential spectra of pseudo-differentials operators and strongly continuous one-parameter semigroups generated by pseudo-differential operators on Lp(IRn), 1 < p < ∞, are given.
Keywords
Similar Articles
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
- Ricardo Castro Santis, Fernando Córdova-Lepe, Ana Belén Venegas, Biorreactor de fermentación con tasa estocástica de consumo , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.











