Pseudodifferential operators in ð¿áµ–(â„â¿)
-
Ryuichi Ashino
ashino@cc.osaka-kyoiku.ac.jp
-
Michihiro Nagase
ashino@cc.osaka-kyoiku.ac.jp
-
Rémi Vaillancourt
remi@uottawa.ca
Downloads
Abstract
We survey general results on the boundedness of pseudodifferential operators in ð¿áµ–(â„â¿). We mainly consider operators with nonregular symbols which are general versions of Hörmander's class SmðœŒ,ð›¿. We treat the theory in a rather classic and elementary manner.
Keywords
Similar Articles
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Iris A. López, On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Mahdi Zreik, On the approximation of the δ-shell interaction for the 3-D Dirac operator , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Maja Fosner, Benjamin Marcen, Nejc Sirovnik, On centralizers of standard operator algebras with involution , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Nejc Sirovnik, On certain functional equation in semiprime rings and standard operator algebras , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- M. Sabet, R. G. Sanati, Topological algebras with subadditive boundedness radius , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- René Erlín Castillo, Héctor Camilo Chaparro, Julio César Ramos-Fernández, \(L_p\)-boundedness of the Laplace transform , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2004-10-01
How to Cite
[1]
R. Ashino, M. Nagase, and R. Vaillancourt, “Pseudodifferential operators in ð¿áµ–(â„â¿)”, CUBO, vol. 6, no. 3, pp. 91–129, Oct. 2004.
Issue
Section
Articles