On Maps with a Single Zigzag
-
Sóstenes Lins
sostenes@dmat.ufpe.br
-
Valdenberg Silva
valden@infonet.com.br
Downloads
Abstract
If a graph GM is embedded into a closed surface S such that S\GM is a collection of disjoint open discs, then M = 3D(GM, S) is called a map. A zigzag in a map M is a closed path which alternates choosing, at each star of a vertex, the leftmost and the rightmost possibilities for its next edge. If a map has a single zigzag we show that the cyclic ordering of the edges along it induces linear transformations, Cp and Cp∼ whose images and kernels are respectively the cycle and bond spaces (over GF(2)) of GM and GD, where D= 3D(GD, S) is the dual map of M. We prove that Im(cp o cp∼) is the intersection of the cycle spaces of GM and GD, and that the dimension of this subspace is connectivity of S. Finally, if M has also a single face, this face induces a linear transformation cD which is invertible: we show that C-1D = 3Dcp∼.
Keywords
Most read articles by the same author(s)
- Sóstenes Lins, A New Application for Room Squares: Tournaments with Internal Referees , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
Similar Articles
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
You may also start an advanced similarity search for this article.











