Mathematical Foundations of Neural Network Theory
-
Burkhard Lenze
lenze@fh-dortmund.de
Downloads
Abstract
In the following paper, we present a brief and easily accessible general survey of the theory of neural networks under special emphasis on the róle of pure and applied mathematics in this interesting field of research.
Keywords
Similar Articles
- Rupali Shinde, Christophe Chesneau, Nitin Darkunde, Solutions of two open problems on inequalities involving trigonometric and hyperbolic functions , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- J. B. Nation, Congruences of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Nemri Akram, Retraction Note: Heisenberg-type uncertainty principle for the second \(q\)-Bargmann transform on the unit disk , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
- Felipe I. Flores, Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2001-01-01
How to Cite
[1]
B. Lenze, “Mathematical Foundations of Neural Network Theory”, CUBO, vol. 3, no. 1, pp. 196–217, Jan. 2001.
Issue
Section
Articles











