Mathematical Foundations of Neural Network Theory
-
Burkhard Lenze
lenze@fh-dortmund.de
Downloads
Abstract
In the following paper, we present a brief and easily accessible general survey of the theory of neural networks under special emphasis on the róle of pure and applied mathematics in this interesting field of research.
Keywords
Similar Articles
- Douglas S. Bridges, Constructivity in Mathematics , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- C. Carpintero, E. Rosas, N. Rajesh, S. Saranyasri, On upper and lower ω-irresolute multifunctions , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- M. Lellis Thivagar, S. Athisaya Ponmani, R. Raja Rajeswari, Erdal Ekici, On Some Bitopological ð›¾-Separation Axioms , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Ìnsal Tekir, Suat Koç, Rashid Abu-Dawwas, Eda Yıldız, Graded weakly 1-absorbing prime ideals , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Ronald Brown, Timothy Porter, The Methodology of Mathematics , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- E. Rosas, C. Carpintero, M. Salas, J. Sanabria, L. Vásquez, Almost ω-continuous functions defined by ω-open sets due to Arhangel‘ski ̆ı , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2001-01-01
How to Cite
[1]
B. Lenze, “Mathematical Foundations of Neural Network Theory”, CUBO, vol. 3, no. 1, pp. 196–217, Jan. 2001.
Issue
Section
Articles











