Uniqueness for higher dimensional trigonometric series
-
J. Marshall Ash
mash@math.depaul.edu
Downloads
Abstract
Five uniqueness questions for multiple trigonometric series are surveyed. If a multiple trigonometric series converges everywhere to zero in the sense of spherical convergence, of unrestricted rectangular convergence, or of iterated convergence, then that series must have every coefficient being zero. But the cases of square convergence and restricted rectangular convergence lead to open questions.
Keywords
Similar Articles
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- M. Angélica Astaburuaga, Víctor H. Cortés, Claudio Fernández, Rafael Del Río, Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Zahoor Ahmad Rather, Rais Ahmad, Inertial viscosity Mann-type subgradient extragradient algorithms for solving variational inequality and fixed point problems in real Hilbert spaces , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.










