Totally Degenerate Extended Kleinian Groups
-
Rubén A. Hidalgo
ruben.hidalgo@ufrontera.cl
Downloads
DOI:
https://doi.org/10.4067/S0719-06462017000300069Abstract
The theoretical existence of totally degenerate Kleinian groups is originally due to Bers and Maskit. In fact, Maskit proved that for any co-compact non-triangle Fuchsian group acting on the hyperbolic plane â„2 there is a totally degenerate Kleinian group algebraically isomorphic to it. In this paper, by making a subtle modification to Maskit‘s construction, we show that for any non-Euclidean crystallographic group F, such that â„2/F is not homeomorphic to a pant, there exists an extended Kleinian group G which is algebraically isomorphic to F and whose orientation-preserving half is a totally degenerate Kleinian group. Moreover, such an isomorphism is provided by conjugation by an orientation-preserving homeomorphism Ï• : â„2 → Ω, where Ω is the region of discontinuity of G. In particular, this also provides another proof to Miyachi‘s existence of totally degenerate finitely generated Kleinian groups whose limit set contains arcs of Euclidean circles.
Keywords
Most read articles by the same author(s)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, Kleinian Groups with Common Commutator Subgroup , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: In Press
Similar Articles
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: In Press
- Ravi P. Agarwal, Michael E. Filippakis, Donal O‘Regan, Nikolaos S. Papageorgiou, Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Ippei Ichigi, Katsumi Shimomura, The Modulo Two Homotopy Groups of the ð¿â‚‚-Localization of the Ravenel Spectrum , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Saharon Shelah, Nɴ-free abelian group with no non-zero homomorphism to ℤ , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Shalom Feigelstock, On Additive Groups of Rings , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Erika Griechisch, Some Theoretical Issues Concerning Hamming Coding , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Patrick Eberlein, Left invariant geometry of Lie groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- David E. Rohrlich, Galois Representations in Mordell-Weil Groups of Elliptic Curves , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- David M. Arnold, An Introduction to the Structure of Abelian Groups , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.