Representaciones lineales irreducibles de grupos finitos en cuerpos de números

Linear irreducible representations of finite groups over number fields

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2702.285

Abstract

In this brief note, we present a method to construct explicitly all irreducible representations of finite groups over a number field, up to equivalence. As a byproduct, we describe how to find the irreducible representations of the generalized quaternion group \(Q(2^{n})\), of order \(2^{n}\), over a field \(L\), where \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) and \(\xi_{2^{n-1}}\) a primitive \(2^{n-1}\)-root of unity.

Resumen

En esta breve nota, presentamos un método para construir explícitamente todas las representaciones irreducibles de grupos finitos sobre un cuerpo de números, salvo equivalencia. Como subproducto, describimos cómo encontrar las representaciones irreducibles del grupo de cuaterniones generalizado \(Q(2^{n})\), de orden \(2^{n}\), sobre un cuerpo \(L\), con \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) y \(\xi_{2^{n-1}}\) una raíz \(2^{n-1}\)-ésima primitiva de la unidad.

Keywords

Irreducible representations , finite groups

Mathematics Subject Classification:

20C05
  • Pages: 285–306
  • Date Published: 2025-09-17
  • In Press

R. C. Alperin, “An elementary account of Selberg’s lemma,” Enseign. Math. (2), vol. 33, no. 3-4, pp. 269–273, 1987.

R. Auffarth, S. Reyes-Carocca, y A. M. Rojas, “On the Jacobian variety of the Accola-Maclachlan curve of genus four,” in New tools in mathematical analysis and applications, ser. Trends Math. Birkhäuser/Springer, Cham, 2025, pp. 3–15, doi: 10.1007/978-3-031-77050-0_1.

A. Behn, R. E. Rodríguez, y A. M. Rojas, “Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces,” J. Pure Appl. Algebra, vol. 217, no. 3, pp. 409–426, 2013, doi: 10.1016/j.jpaa.2012.06.030.

A. Carocca, S. Recillas, y R. E. Rodríguez, “Dihedral groups acting on Jacobians,” in Complex manifolds and hyperbolic geometry (Guanajuato, 2001), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, vol. 311, pp. 41–77, doi: 10.1090/conm/311/05446.

A. Carocca, S. Reyes-Carocca, y R. E. Rodríguez, “Abelian varieties and Riemann surfaces with generalized quaternion group action,” J. Pure Appl. Algebra, vol. 227, no. 11, 2023, Art. ID 107398, doi: 10.1016/j.jpaa.2023.107398.

C. Curtis e I. Reiner, Representation Theory of Finite Groups and Associative Algebras, ser. AMS Chelsea Publishing Series. Interscience Publishers, 1966.

H. Lange y S. Recillas, “Abelian varieties with group action,” J. Reine Angew. Math., vol. 575, pp. 135–155, 2004, doi: 10.1515/crll.2004.076.

S. Recillas y R. E. Rodríguez, “Jacobians and representations of S3,” in Workshop on Abelian Varieties and Theta Functions (Spanish) (Morelia, 1996), ser. Aportaciones Mat. Investig. Soc. Mat. Mexicana, México, 1998, vol. 13, pp. 117–140.

R. E. Rodríguez y A. M. Rojas, “A fruitful interaction between algebra, geometry, and topology: varieties through the lens of group actions,” Notices Amer. Math. Soc., vol. 71, no. 6, pp. 715–723, 2024, doi: 10.1090/noti2950.

J.-P. Serre, Linear representations of finite groups, ser. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, vol. 42.

  • ANID Fondecyt 1230708
  • ANID Fondecyt 1230034

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-09-17

How to Cite

[1]
R. E. Rodríguez, A. M. Rojas, and M. Saavedra-Lagos, “Representaciones lineales irreducibles de grupos finitos en cuerpos de números: Linear irreducible representations of finite groups over number fields”, CUBO, pp. 285–306, Sep. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.