Representaciones lineales irreducibles de grupos finitos en cuerpos de números
Linear irreducible representations of finite groups over number fields
-
Rubí E. Rodríguez
rubi.rodriguez@ufrontera.cl
-
Anita M. Rojas
anirojas@uchile.cl
-
Matías Saavedra-Lagos
matias.saavedra.l@ug.uchile.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.285Abstract
In this brief note, we present a method to construct explicitly all irreducible representations of finite groups over a number field, up to equivalence. As a byproduct, we describe how to find the irreducible representations of the generalized quaternion group \(Q(2^{n})\), of order \(2^{n}\), over a field \(L\), where \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) and \(\xi_{2^{n-1}}\) a primitive \(2^{n-1}\)-root of unity.
ResumenEn esta breve nota, presentamos un método para construir explícitamente todas las representaciones irreducibles de grupos finitos sobre un cuerpo de números, salvo equivalencia. Como subproducto, describimos cómo encontrar las representaciones irreducibles del grupo de cuaterniones generalizado \(Q(2^{n})\), de orden \(2^{n}\), sobre un cuerpo \(L\), con \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) y \(\xi_{2^{n-1}}\) una raíz \(2^{n-1}\)-ésima primitiva de la unidad.
Keywords
Mathematics Subject Classification:
R. C. Alperin, “An elementary account of Selberg’s lemma,” Enseign. Math. (2), vol. 33, no. 3-4, pp. 269–273, 1987.
R. Auffarth, S. Reyes-Carocca, y A. M. Rojas, “On the Jacobian variety of the Accola-Maclachlan curve of genus four,” in New tools in mathematical analysis and applications, ser. Trends Math. Birkhäuser/Springer, Cham, 2025, pp. 3–15, doi: 10.1007/978-3-031-77050-0_1.
A. Behn, R. E. Rodríguez, y A. M. Rojas, “Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces,” J. Pure Appl. Algebra, vol. 217, no. 3, pp. 409–426, 2013, doi: 10.1016/j.jpaa.2012.06.030.
A. Carocca, S. Recillas, y R. E. Rodríguez, “Dihedral groups acting on Jacobians,” in Complex manifolds and hyperbolic geometry (Guanajuato, 2001), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, vol. 311, pp. 41–77, doi: 10.1090/conm/311/05446.
A. Carocca, S. Reyes-Carocca, y R. E. Rodríguez, “Abelian varieties and Riemann surfaces with generalized quaternion group action,” J. Pure Appl. Algebra, vol. 227, no. 11, 2023, Art. ID 107398, doi: 10.1016/j.jpaa.2023.107398.
C. Curtis e I. Reiner, Representation Theory of Finite Groups and Associative Algebras, ser. AMS Chelsea Publishing Series. Interscience Publishers, 1966.
H. Lange y S. Recillas, “Abelian varieties with group action,” J. Reine Angew. Math., vol. 575, pp. 135–155, 2004, doi: 10.1515/crll.2004.076.
S. Recillas y R. E. Rodríguez, “Jacobians and representations of S3,” in Workshop on Abelian Varieties and Theta Functions (Spanish) (Morelia, 1996), ser. Aportaciones Mat. Investig. Soc. Mat. Mexicana, México, 1998, vol. 13, pp. 117–140.
R. E. Rodríguez y A. M. Rojas, “A fruitful interaction between algebra, geometry, and topology: varieties through the lens of group actions,” Notices Amer. Math. Soc., vol. 71, no. 6, pp. 715–723, 2024, doi: 10.1090/noti2950.
J.-P. Serre, Linear representations of finite groups, ser. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, vol. 42.
- ANID Fondecyt 1230708
- ANID Fondecyt 1230034
Similar Articles
- Andrew Craig, Miroslav Haviar, Klarise Marais, Dual digraphs of finite meet-distributive and modular lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- J. B. Nation, Congruences of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- S.V. Ludkovsky, Wrap groups of fiber bundles and their structure , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Andrew Craig, Miroslav Haviar, José São João, Dual digraphs of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Rubén A. Hidalgo, A sufficiently complicated noded Schottky group of rank three , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Eloisa Detomi, Andrea Lucchini, On the Structure of Primitive ð“ƒ-Sum Groups , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, Totally Degenerate Extended Kleinian Groups , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- David E. Rohrlich, Galois Representations in Mordell-Weil Groups of Elliptic Curves , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. E. Rodríguez et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.