Representaciones lineales irreducibles de grupos finitos en cuerpos de números
Linear irreducible representations of finite groups over number fields
-
Rubí E. Rodríguez
rubi.rodriguez@ufrontera.cl
-
Anita M. Rojas
anirojas@uchile.cl
-
Matías Saavedra-Lagos
matias.saavedra.l@ug.uchile.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.285Abstract
In this brief note, we present a method to construct explicitly all irreducible representations of finite groups over a number field, up to equivalence. As a byproduct, we describe how to find the irreducible representations of the generalized quaternion group \(Q(2^{n})\), of order \(2^{n}\), over a field \(L\), where \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) and \(\xi_{2^{n-1}}\) a primitive \(2^{n-1}\)-root of unity.
ResumenEn esta breve nota, presentamos un método para construir explícitamente todas las representaciones irreducibles de grupos finitos sobre un cuerpo de números, salvo equivalencia. Como subproducto, describimos cómo encontrar las representaciones irreducibles del grupo de cuaterniones generalizado \(Q(2^{n})\), de orden \(2^{n}\), sobre un cuerpo \(L\), con \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) y \(\xi_{2^{n-1}}\) una raíz \(2^{n-1}\)-ésima primitiva de la unidad.
Keywords
Mathematics Subject Classification:
R. C. Alperin, “An elementary account of Selberg’s lemma,” Enseign. Math. (2), vol. 33, no. 3-4, pp. 269–273, 1987.
R. Auffarth, S. Reyes-Carocca, y A. M. Rojas, “On the Jacobian variety of the Accola-Maclachlan curve of genus four,” in New tools in mathematical analysis and applications, ser. Trends Math. Birkhäuser/Springer, Cham, 2025, pp. 3–15, doi: 10.1007/978-3-031-77050-0_1.
A. Behn, R. E. Rodríguez, y A. M. Rojas, “Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces,” J. Pure Appl. Algebra, vol. 217, no. 3, pp. 409–426, 2013, doi: 10.1016/j.jpaa.2012.06.030.
A. Carocca, S. Recillas, y R. E. Rodríguez, “Dihedral groups acting on Jacobians,” in Complex manifolds and hyperbolic geometry (Guanajuato, 2001), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, vol. 311, pp. 41–77, doi: 10.1090/conm/311/05446.
A. Carocca, S. Reyes-Carocca, y R. E. Rodríguez, “Abelian varieties and Riemann surfaces with generalized quaternion group action,” J. Pure Appl. Algebra, vol. 227, no. 11, 2023, Art. ID 107398, doi: 10.1016/j.jpaa.2023.107398.
C. Curtis e I. Reiner, Representation Theory of Finite Groups and Associative Algebras, ser. AMS Chelsea Publishing Series. Interscience Publishers, 1966.
H. Lange y S. Recillas, “Abelian varieties with group action,” J. Reine Angew. Math., vol. 575, pp. 135–155, 2004, doi: 10.1515/crll.2004.076.
S. Recillas y R. E. Rodríguez, “Jacobians and representations of S3,” in Workshop on Abelian Varieties and Theta Functions (Spanish) (Morelia, 1996), ser. Aportaciones Mat. Investig. Soc. Mat. Mexicana, México, 1998, vol. 13, pp. 117–140.
R. E. Rodríguez y A. M. Rojas, “A fruitful interaction between algebra, geometry, and topology: varieties through the lens of group actions,” Notices Amer. Math. Soc., vol. 71, no. 6, pp. 715–723, 2024, doi: 10.1090/noti2950.
J.-P. Serre, Linear representations of finite groups, ser. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, vol. 42.
- ANID Fondecyt 1230708
- ANID Fondecyt 1230034
Similar Articles
- V.V. Kirichenko, B.V. Novikov, A.P. Petravchuk, Finite Fields , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Felipe I. Flores, Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida , CUBO, A Mathematical Journal: In Press
- Gurucharan Singh Saluja, Hemant Kumar Nashine, Strong convergence of an implicit iteration process for a finite family of strictly asymptotically pseudocontractive mappings , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Takahiro Sudo, K-theory for the C*-algebras of continuous functions on certain homogeneous spaces in semi-simple Lie groups. , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, Kleinian Groups with Common Commutator Subgroup , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- John A.D. Appleby, James P. Gleeson, Alexandra Rodkina, Asymptotic Constancy and Stability in Nonautonomous Stochastic Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Boggiatto Paolo, De Donno Giuseppe, Oliaro Alessandro, Bui Kien Cuong, Generalized spectrograms and Ï„-Wigner transforms , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. E. Rodríguez et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.