Characterization of bc and strongly bc-polyharmonic functions

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2801.205

Abstract

We provide new characterizations of the bicomplex harmonic and strongly bc-harmonic functions in terms of bc-holomorphic functions. An extension to the bc-polyharmonic setting is investigated. We also derive similar bicomplex analog for strongly bc-polyharmonic functions of finite bi-order.

Keywords

bc-polyholomorphic functions , bc-harmonic functions , strongly bc-harmonic functions , bc-polyharmonicity , Almansi’s theorem

Mathematics Subject Classification:

30G35 , 32A30 , 30F15
  • Pages: 205–225
  • Date Published: 2026-01-27
  • Vol. 28 No. 1 (2026)

A. Abouricha, A. El Gourari, and A. Ghanmi, “Mean value theorems for bicomplex harmonic functions,” Adv. Appl. Clifford Algebr., vol. 33, no. 4, 2023, Art. 41, doi: 10.1007/s00006-023-01285-9.

I. Ahizoune, A. Elgourari, and A. Ghanmi, “Spectral analysis of the bicomplex magnetic Laplacian,” Math. Methods Appl. Sci., vol. 48, no. 1, pp. 176–188, 2025.

D. S. Alexiadis and G. D. Sergiadis, “Estimation of motions in color image sequences using hypercomplex Fourier transforms,” IEEE Trans. Image Process., vol. 18, no. 1, pp. 168–187, 2009.

E. Almansi, “Sull’integrazione dell’equazione differenziale δ2n0,” Annali di Matematica Pura ed Applicata, vol. 2, no. 1, pp. 1–51, 1899, doi: 10.1007/BF02419286.

D. H. Armitage, W. Haussmann, and K. Zeller, “Best harmonic and polyharmonic approximation,” in Approximation and optimization, Vol. I (Cluj-Napoca, 1996). Transilvania, Cluj-Napoca, 1997, pp. 17–34.

N. Aronszajn, T. M. Creese, and L. J. Lipkin, Polyharmonic functions, ser. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1983.

S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, 2nd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 2001, vol. 137, doi: 10.1007/978-1-4757-8137-3.

B. Bacchelli, M. Bozzini, C. Rabut, and M.-L. Varas, “Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets,” Appl. Comput. Harmon. Anal., vol. 18, no. 3, pp. 282–299, 2005, doi: 10.1016/j.acha.2004.11.007.

A. Banerjee, “On the quantum mechanics of bicomplex Hamiltonian system,” Ann. Physics, vol. 377, pp. 493–505, 2017, doi: 10.1016/j.aop.2017.01.006.

A. Boussejra and A. Intissar, “L2-concrete spectral analysis of the invariant Laplacian ∆αβ in the unit complex ball Bn,” J. Funct. Anal., vol. 160, no. 1, pp. 115–140, 1998, doi: 10.1006/jfan.1998.3318.

C.-H. Chu and A. T.-M. Lau, Harmonic functions on groups and Fourier algebras, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002, vol. 1782, doi: 10.1007/b83280.

F. Colombo, I. Sabadini, D. C. Struppa, A. Vajiac, and M. B. Vajiac, “Singularities of functions of one and several bicomplex variables,” Ark. Mat., vol. 49, no. 2, pp. 277–294, 2011, doi: 10.1007/s11512-010-0126-0.

H. De Bie, D. C. Struppa, A. Vajiac, and M. B. Vajiac, “The Cauchy-Kowalewski product for bicomplex holomorphic functions,” Math. Nachr., vol. 285, no. 10, pp. 1230–1242, 2012, doi: 10.1002/mana.201100047.

G. S. Dragoni, “Sul fondamento matematico della teoria degli invarianti adiabatici,” Ann. Mat. Pura Appl., vol. 13, no. 1, pp. 335–362, 1934, doi: 10.1007/BF02413451.

A. El Gourari, A. Ghanmi, and K. Zine, “On bicomplex Fourier-Wigner transforms,” Int. J. Wavelets Multiresolut. Inf. Process., vol. 18, no. 3, 2020, Art. ID 2050008, doi: 10.1142/S0219691320500083.

A. El Gourari, A. Ghanmi, and I. Rouchdi, “Bicomplex polyharmonicity and polyholomorphy,” Complex Anal. Oper. Theory, vol. 16, no. 5, 2022, Art. ID 67, doi: 10.1007/s11785-022-01240-9.

T. A. Ell and S. J. Sangwine, “Hypercomplex Fourier transforms of color images,” IEEE Trans. Image Process., vol. 16, no. 1, pp. 22–35, 2007, doi: 10.1109/TIP.2006.884955.

R. Gervais Lavoie, L. Marchildon, and D. Rochon, “The bicomplex quantum harmonic oscillator,” Nuovo Cimento Soc. Ital. Fis. B, vol. 125, no. 10, pp. 1173–1192, 2010.

R. Gervais Lavoie, L. Marchildon, and D. Rochon, “Infinite-dimensional bicomplex Hilbert spaces,” Ann. Funct. Anal., vol. 1, no. 2, pp. 75–91, 2010, doi: 10.15352/afa/1399900590.

A. Ghanmi and A. Intissar, “Asymptotic of complex hyperbolic geometry and L2-spectral analysis of Landau-like Hamiltonians,” J. Math. Phys., vol. 46, no. 3, 2005, Art. ID 032107, doi: 10.1063/1.1853505.

A. Ghanmi and K. Zine, “Bicomplex analogs of Segal-Bargmann and fractional Fourier transforms,” Adv. Appl. Clifford Algebr., vol. 29, no. 4, 2019, Art. ID 74, doi: 10.1007/s00006-019-0993-9.

S. J. Hales and J. Levesley, “Error estimates for multilevel approximation using polyharmonic splines,” Numer. Algorithms, vol. 30, no. 1, pp. 1–10, 2002, doi: 10.1023/A:1015674607196.

W. Hansen and N. Nadirashvili, “A converse to the mean value theorem for harmonic functions,” Acta Math., vol. 171, no. 2, pp. 139–163, 1993, doi: 10.1007/BF02392531.

M. Klintborg and A. Olofsson, “A series expansion for generalized harmonic functions,” Anal. Math. Phys., vol. 11, no. 3, 2021, Art. ID 122, doi: 10.1007/s13324-021-00561-w.

M. Kobayashi, “Stability conditions of bicomplex-valued Hopfield neural networks,” Neural Comput., vol. 33, no. 2, pp. 552–562, 2021, doi: 10.1162/neco_a_01350.

O. Kounchev, Multivariate polysplines: applications to numerical and wavelet analysis. Academic Press, Inc., San Diego, CA, 2001, doi: 10.1198/tech.2001.s63.

M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, and A. Vajiac, Bicomplex holomorphic functions, ser. Frontiers in Mathematics. Birkhäuser/Springer, Cham, 2015, doi: 10.1007/978-3-319-24868-4.

T. M. MacRobert, Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. Methuen & Co., Ltd., London, 1947.

W. R. Madych and S. A. Nelson, “Polyharmonic cardinal splines,” J. Approx. Theory, vol. 60, no. 2, pp. 141–156, 1990.

M. Nicolesco, Les fonctions polyharmoniques. Paris: Hermann & Cie Éditeurs, 1936.

S.-C. Pei, J.-H. Chang, and J.-J. Ding, “Commutative reduced biquaternions and their Fourier transform for signal and image processing applications,” IEEE Trans. Signal Process., vol. 52, no. 7, pp. 2012–2031, 2004, doi: 10.1109/TSP.2004.828901.

G. B. Price, An introduction to multicomplex spaces and functions, ser. Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991, vol. 140.

T. Reum and H. Toepfer, “Introduction of the bicomplex analysis in the finite element method applied to electromagnetic far-field calculations,” in 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), 2019,

doi: 10.1109/ISEF45929.2019.9097005.

J. D. Riley, “Contributions to the theory of functions of a bicomplex variable,” Tohoku Math. J. (2), vol. 5, pp. 132–165, 1953.

F. Ringleb, “Beiträge zur funktionentheorie in hyperkomplexen systemen. I,” Rendiconti del Circolo Matematico di Palermo, vol. 57, pp. 311–340, 1933, doi: 10.1007/BF03017582.

D. Rochon, “On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrödinger equation,” Complex Var. Elliptic Equ., vol. 53, no. 6, pp. 501–521, 2008, doi: 10.1080/17476930701769058.

D. Rochon and S. Tremblay, “Bicomplex quantum mechanics. I. The generalized Schrödinger equation,” Adv. Appl. Clifford Algebr., vol. 14, no. 2, pp. 231–248, 2004, doi: 10.1007/s00006-004-0015-3.

D. Rochon and S. Tremblay, “Bicomplex quantum mechanics. II. The Hilbert space,” Adv. Appl. Clifford Algebr., vol. 16, no. 2, pp. 135–157, 2006, doi: 10.1007/s00006-006-0008-5.

C. Segre, “Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici,” Math. Ann., vol. 40, no. 3, pp. 413–467, 1892, doi: 10.1007/BF01443559.

N. Spampinato, “Sulla rappresentazione delle funzioni di variabile bicomplessa totalmente derivabili,” Ann. Mat. Pura Appl., vol.14, no.1, pp.305–325, 1935, doi: 10.1007/BF02411933.

T. Takasu, “Theorie der Funktionen einer allgemeinen bikomplexen Veränderlichen. I,” Sci. Rep. Tôhoku Imp. Univ., Ser. 1, vol. 32, pp. 1–55, 1945.

K. A. Theaker and R. A. Van Gorder, “Multicomplex wave functions for linear and nonlinear Schrödinger equations,” Adv. Appl. Clifford Algebr., vol. 27, no. 2, pp. 1857–1879, 2017, doi: 10.1007/s00006-016-0734-2.

N. Vieira, “Bicomplex neural networks with hypergeometric activation functions,” Adv. Appl. Clifford Algebr., vol. 33, no. 2, 2023, Art. ID 20, doi: 10.1007/s00006-023-01268-w.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2026-01-27

How to Cite

[1]
A. Abouricha, L. Bouali, and A. Ghanmi, “Characterization of bc and strongly bc-polyharmonic functions”, CUBO, vol. 28, no. 1, pp. 205–225, Jan. 2026.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.