Representaciones lineales irreducibles de grupos finitos en cuerpos de números
Linear irreducible representations of finite groups over number fields
-
Rubí E. Rodríguez
rubi.rodriguez@ufrontera.cl
-
Anita M. Rojas
anirojas@uchile.cl
-
Matías Saavedra-Lagos
matias.saavedra.l@ug.uchile.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.285Abstract
In this brief note, we present a method to construct explicitly all irreducible representations of finite groups over a number field, up to equivalence. As a byproduct, we describe how to find the irreducible representations of the generalized quaternion group \(Q(2^{n})\), of order \(2^{n}\), over a field \(L\), where \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) and \(\xi_{2^{n-1}}\) a primitive \(2^{n-1}\)-root of unity.
ResumenEn esta breve nota, presentamos un método para construir explícitamente todas las representaciones irreducibles de grupos finitos sobre un cuerpo de números, salvo equivalencia. Como subproducto, describimos cómo encontrar las representaciones irreducibles del grupo de cuaterniones generalizado \(Q(2^{n})\), de orden \(2^{n}\), sobre un cuerpo \(L\), con \(\mathbb{Q}\leq L\leq \mathbb{Q}(\xi_{2^{n-1}})\) y \(\xi_{2^{n-1}}\) una raíz \(2^{n-1}\)-ésima primitiva de la unidad.
Keywords
Mathematics Subject Classification:
R. C. Alperin, “An elementary account of Selberg’s lemma,” Enseign. Math. (2), vol. 33, no. 3-4, pp. 269–273, 1987.
R. Auffarth, S. Reyes-Carocca, y A. M. Rojas, “On the Jacobian variety of the Accola-Maclachlan curve of genus four,” in New tools in mathematical analysis and applications, ser. Trends Math. Birkhäuser/Springer, Cham, 2025, pp. 3–15, doi: 10.1007/978-3-031-77050-0_1.
A. Behn, R. E. Rodríguez, y A. M. Rojas, “Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces,” J. Pure Appl. Algebra, vol. 217, no. 3, pp. 409–426, 2013, doi: 10.1016/j.jpaa.2012.06.030.
A. Carocca, S. Recillas, y R. E. Rodríguez, “Dihedral groups acting on Jacobians,” in Complex manifolds and hyperbolic geometry (Guanajuato, 2001), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, vol. 311, pp. 41–77, doi: 10.1090/conm/311/05446.
A. Carocca, S. Reyes-Carocca, y R. E. Rodríguez, “Abelian varieties and Riemann surfaces with generalized quaternion group action,” J. Pure Appl. Algebra, vol. 227, no. 11, 2023, Art. ID 107398, doi: 10.1016/j.jpaa.2023.107398.
C. Curtis e I. Reiner, Representation Theory of Finite Groups and Associative Algebras, ser. AMS Chelsea Publishing Series. Interscience Publishers, 1966.
H. Lange y S. Recillas, “Abelian varieties with group action,” J. Reine Angew. Math., vol. 575, pp. 135–155, 2004, doi: 10.1515/crll.2004.076.
S. Recillas y R. E. Rodríguez, “Jacobians and representations of S3,” in Workshop on Abelian Varieties and Theta Functions (Spanish) (Morelia, 1996), ser. Aportaciones Mat. Investig. Soc. Mat. Mexicana, México, 1998, vol. 13, pp. 117–140.
R. E. Rodríguez y A. M. Rojas, “A fruitful interaction between algebra, geometry, and topology: varieties through the lens of group actions,” Notices Amer. Math. Soc., vol. 71, no. 6, pp. 715–723, 2024, doi: 10.1090/noti2950.
J.-P. Serre, Linear representations of finite groups, ser. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977, vol. 42.
- ANID Fondecyt 1230708
- ANID Fondecyt 1230034
Similar Articles
- Andrei Gagarin, William Kocay, Daniel Neilson, Embeddings of Small Graphs on the Torus , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Boggiatto Paolo, De Donno Giuseppe, Oliaro Alessandro, Bui Kien Cuong, Generalized spectrograms and Ï„-Wigner transforms , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Dan Archdeacon, A picture is worth a thousand words: topological graph theory , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. E. Rodríguez et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.