An approach to F. Riesz representation Theorem
-
Rafael del Rio
delrio@iimas.unam.mx
-
Asaf L. Franco
asaflevif@hotmail.com
-
Jose A. Lara
nekrotzar.ligeti@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000200001Abstract
In this note we give a direct proof of the F. Riesz representation theorem which characterizes the linear functionals acting on the vector space of continuous functions defined on a set K. Our start point is the original formulation of Riesz where K is a closed interval. Using elementary measure theory, we give a proof for the case K is an arbitrary compact set of real numbers. Our proof avoids complicated arguments commonly used in the description of such functionals.
Keywords
Bartle, Robert G. The elements of integration. John Wiley & Sons, Inc., New York-London- Sydney 1966 x+129 pp.
V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
D. Cohn, Measure theory, secon ed., Birkh ̈auser, Boston, Mass. 2013.
Doob, J. L. Measure theory. Graduate Texts in Mathematics, 143. Springer-Verlag, New York, 1994. xii+210 pp. ISBN: 0-387-94055-3
Gerald B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication.
Gray, J. D. The shaping of the Riesz representation theorem: a chapter in the history of analysis. Arch. Hist. Exact Sci. 31 (1984), no. 2, 127–187.
D. G. Hartig, The Riesz Representation Theorem Revisited, Amer. Math. Monthly 90 No. 4 (1983), pp. 277–280
E. Helly, U ̈ber lineare Funktionaloperationen, Wien Ber. 121 (1912), 265–297.
Shizuo Kakutani, Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions.), Ann. of Math. (2) 42 (1941), 994–1024.
Erwin Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, New York-London-Sydney, 1978.
A. Markoff, On mean values and exterior densities, Mat. Sbornik 4 (46) (1938), no. 1, 165–191.
Johann Radon, Gesammelte Abhandlungen. Band 1, Verlag der O ̈ sterreichischen Akademie der Wissenschaften, Vienna; Birkh ̈auser Verlag, Basel, 1987, With a foreword by Otto Hittmair, Edited and with a preface by Peter Manfred Gruber, Edmund Hlawka, Wilfried No ̈bauer and Leopold Schmetterer.
Michael Reed and Barry Simon, Methods of modern mathematical physics. I, second ed., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980, Functional analysis.
F. Riesz, Sur les op Ìerations fonctionnelles lin Ìeares, Comptes Rendus Acad. Sci. Paris 149 (1909), 974–977.
Demonstration nouvelle d‘un th Ìeor`eme concernant les op Ìerations, Annales Ecole Norm. Sup. 31 (1914), 9–14.
Fr Ìed Ìeric Riesz, Sur la repr Ìesentation des op Ìerations fonctionnelles lin Ìeaires par des int Ìegrales de Stieltjes, Comm. S Ìem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplementaire, 181–185.
Frigyes Riesz and B Ìela Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990, Translated from the second French edition by Leo F. Boron, Reprint of the 1955 original.
H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963.
Walter Rudin, Real and Complex Analysis 3rd. ed., McGraw-Hill, Inc., 1987, New York, NY, USA.
S. Saks, Integration in abstract metric spaces, Duke Math. J. 4 (1938), no. 2, 408–411.
Stanislô°€aw Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964.
Martin Schechter, Principles of functional analysis, second ed., Graduate Studies in Mathe- matics, vol. 36, American Mathematical Society, Providence, RI, 2002.
Barry Simon, Real analysis, A Comprehensive Course in Analysis, Part 1, American Mathe- matical Society, Providence, RI, 2015, With a 68 page companion booklet.
Similar Articles
- M. H. Saleh, S. M. Amer, M. H. Ahmed, The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert Kernel , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Yasuyuki Oka, On the Weyl transform with symbol in the Gel‘fand-Shilov space and its dual space , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.