On Katugampola fractional order derivatives and Darboux problem for differential equations
-
Djalal Boucenna
benmakhloufabdellatif@gmail.com
-
Abdellatif Ben Makhlouf
benmakhloufabdellatif@gmail.com
-
Mohamed Ali Hammami
benmakhloufabdellatif@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000100125Abstract
In this paper, we investigate the existence and uniqueness of solutions for the Darboux problem of partial differential equations with Caputo-Katugampola fractional derivative.
Keywords
H . J. Haubold, A. M. Mathai, and R. K. Saxena. Mittag-Leffler Functions and Their Applications, Jour of App Math Volume 2011, Article ID 298628, 51 pages.
Almeida, R., Malinowska, A. B., Odzijewicz, T. Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative, J. Comput. Nonlinear Dynam, Vol. 11, pp. 061017 (2016).
Katugampola, U. N., Existence and uniqueness results for a class of generalized fractional differential equations, preprint arXiv: 1411.5229.
Katugampola, U. N., A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Vol. 6, pp. 1-15 (2014).
Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).
Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media ”Springer, Heidelberg; Higher Education Press, Beijing (2010).
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam (2006).
Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York (1993).
Bai, Y., Kong, H., Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions, J. Nonlinear Sci. Appl., Vol. 10, pp. 5744-5752 (2017).
Guo, T. L., Zhang, K., Impulsive fractional partial differential equations, Applied Mathematics and Computation, Vol. 257, pp. 581-590 (2015).
Zhang, X., On impulsive partial differential equations with Caputo-Hadamard fractional derivatives, Advances in Difference Equations, Vol. 2016, pp. 281 (2016).
Cernea, A., On the Solutions of a Class of Fractional Hyperbolic Integro-Differential Inclusions, International Journal of Analysis and Applications, Vol. 17, pp. 904-916 (2019).
Erdélyi, A. and Kober, H., Some remarks on Hankel transforms, Q. J. Math., Vol. 11, pp. 212-221 (1940).
Katugampola, U. N., A new approach to generalized fractional derivative, Bull. Math. Anal. Appl., Vol. 6, pp. 1-15 (2014).
Most read articles by the same author(s)
- Mekki Hammi, Mohamed Ali Hammami, Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
Similar Articles
- Adusei-Poku Afful, Ernest Yankson, Agnes Adom-Konadu, Existence and stability of solutions of totally nonlinear neutral Caputo q-fractional difference equations , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- M. H. Saleh, S. M. Amer, M. A. Mohamed, N. S. Abdelrhman, Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Junwei Liu, Chuanyi Zhang, Existence and stability of almost periodic solutions to impulsive stochastic differential equations , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Paolo Piccione, Daniel V. Tausk, Topological Methods for ODE's: Symplectic Differential Systems , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











