Fixed point theorems on cone \(S\)-metric spaces using implicit relation
-
G. S. Saluja
saluja1963@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000200273Abstract
In this paper, we establish some fixed point theorems in the framework of cone \(S\)-metric spaces using implicit relation. Our results extend, unify and generalize several results from the current existing literature. Especially, they extend the corresponding results of Sedghi and Dung [24] to the setting of complete cone \(S\)-metric spaces.
Keywords
A. Aliouche and V. Popa, General common fixed point theorems for occasionally weakly compatible hybmappings and applications, Novi Sad J. Math. 39(1) (2009), 89–109.
V. Berinde, Approximating fixed points of implicit almost contractions, Hacet. J. Math. Stat. 41 (2012), no. 1, 93–102.
V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 2012, 2012:105, 8 pp.
S. K. Chatterjae, Fixed point theorems compactes, Rend. Acad. Bulgare Sci. 25 (1972), 727- 730
Lj. B. Ćirić, A generalization of Banach‘s contraction principle, Proc. Amer. Math. Soc. 4 (1974), 267–273.
D. Dhamodharan and R. Krishnakumar, Cone S-metric space and fixed point theorems of contractive mappings, Annals of Pure Appl. Math. 14(2) (2017), 237-243.
K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat. 11 (2002), no. 1, 135–143.
R. Kannan, Some results on fixed point theorems, Bull. Calcutta Math. Soc. 60(1969), 71–78.
J. K. Kim, S. Sedghi and N. Shobkolaei, Common fixed point theorems for the R-weakly commuting mappings in S-metric spaces, J. Comput. Anal. Appl. 19 (2015), no. 4, 751–759.
R. Krishnakumar and D. Dhamodharan, Fixed point theorems in normal cone metric space, Int. J. Math. Sci. Engg. Appl. 10(III) (2016), 213–224.
Nguyen Van Dung, N. T. Hieu and S. Radojevi Ìc, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat 28 (2014), no. 9, 1885–1898.
N. Yilmaz Özgür and N. Tas, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (2017), no. 1, 39–52.
V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. S ̧tiin ̧t. Ser. Mat. Univ. Bacau No. 7 (1997), 127–133 (1999).
V. Popa, On some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32(1) (1999), 157–163.
V. Popa, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat No. 19 (2005), 45–51.
V. Popa and A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces, J. Nonlinear Sci. Appl. 5 (2012), no. 2, Special issue, 151–160.
V. Popa and A.-M. Patriciu, Fixed point theorems for two pairs of mappings in partial metric spaces, Facta Univ. Ser. Math. Inform. 31 (2016), no. 5, 969–980.
M. U. Rahman and M. Sarwar, Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10(1) (2016), 58–63.
S. Reich, Some remarks concerning contraction mappings, Canada. Math. Bull. 14 (1971), 121–124.
Sh. Rezapour and R. Hamlbarani, Some notes on the paper: “Cone metric spaces and fixed point theorems of contractive mappings” [J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476; by L.-G. Huang and X. Zhang, J. Math. Anal. Appl. 345 (2008), no. 2, 719–724.
S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), no. 3, 258–266.
S. Sedghi and N. V. Dung, Fixed point theorems on S-metric space, Mat. Vesnik 66(1) (2014), 113–124.
S. Sedghi, N. Shobe and T. Došenović, Fixed point results in S-metric spaces, Nonlinear Funct. Anal. Appl. 20(1) (2015), 55–67.
S. Sedghi et al., Common fixed point theorems for contractive mappings satisfying Φ-maps in S-metric spaces, Acta Univ. Sapientiae Math. 8 (2016), no. 2, 298–311.
N. Tas and N. Yilmaz Ozgur, New generalized fixed point results on Sb-metric spaces, arxiv:1703.01868v2 [math.gn] 17 apr. 2017.
J. S. Vandergraft, Newton‘s method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967), 406–432.
P. P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math. 48 (1997), no. 4-6, 825–859.
Most read articles by the same author(s)
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
Similar Articles
- Donal O‘Regan, Reza Saadati, â„’ -Random and Fuzzy Normed Spaces and Classical Theory , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
- M. Lellis Thivagar, S. Athisaya Ponmani, R. Raja Rajeswari, Erdal Ekici, On Some Bitopological ð›¾-Separation Axioms , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Mahmoud Benkhalifa, Note on the \(F_{0}\)-spaces , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.











