Fixed point theorems on cone \(S\)-metric spaces using implicit relation
-
G. S. Saluja
saluja1963@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000200273Abstract
In this paper, we establish some fixed point theorems in the framework of cone \(S\)-metric spaces using implicit relation. Our results extend, unify and generalize several results from the current existing literature. Especially, they extend the corresponding results of Sedghi and Dung [24] to the setting of complete cone \(S\)-metric spaces.
Keywords
A. Aliouche and V. Popa, General common fixed point theorems for occasionally weakly compatible hybmappings and applications, Novi Sad J. Math. 39(1) (2009), 89–109.
V. Berinde, Approximating fixed points of implicit almost contractions, Hacet. J. Math. Stat. 41 (2012), no. 1, 93–102.
V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 2012, 2012:105, 8 pp.
S. K. Chatterjae, Fixed point theorems compactes, Rend. Acad. Bulgare Sci. 25 (1972), 727- 730
Lj. B. Ćirić, A generalization of Banach‘s contraction principle, Proc. Amer. Math. Soc. 4 (1974), 267–273.
D. Dhamodharan and R. Krishnakumar, Cone S-metric space and fixed point theorems of contractive mappings, Annals of Pure Appl. Math. 14(2) (2017), 237-243.
K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Mat. 11 (2002), no. 1, 135–143.
R. Kannan, Some results on fixed point theorems, Bull. Calcutta Math. Soc. 60(1969), 71–78.
J. K. Kim, S. Sedghi and N. Shobkolaei, Common fixed point theorems for the R-weakly commuting mappings in S-metric spaces, J. Comput. Anal. Appl. 19 (2015), no. 4, 751–759.
R. Krishnakumar and D. Dhamodharan, Fixed point theorems in normal cone metric space, Int. J. Math. Sci. Engg. Appl. 10(III) (2016), 213–224.
Nguyen Van Dung, N. T. Hieu and S. Radojevi Ìc, Fixed point theorems for g-monotone maps on partially ordered S-metric spaces, Filomat 28 (2014), no. 9, 1885–1898.
N. Yilmaz Özgür and N. Tas, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (2017), no. 1, 39–52.
V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. S ̧tiin ̧t. Ser. Mat. Univ. Bacau No. 7 (1997), 127–133 (1999).
V. Popa, On some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstr. Math. 32(1) (1999), 157–163.
V. Popa, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat No. 19 (2005), 45–51.
V. Popa and A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces, J. Nonlinear Sci. Appl. 5 (2012), no. 2, Special issue, 151–160.
V. Popa and A.-M. Patriciu, Fixed point theorems for two pairs of mappings in partial metric spaces, Facta Univ. Ser. Math. Inform. 31 (2016), no. 5, 969–980.
M. U. Rahman and M. Sarwar, Fixed point results of Altman integral type mappings in S-metric spaces, Int. J. Anal. Appl. 10(1) (2016), 58–63.
S. Reich, Some remarks concerning contraction mappings, Canada. Math. Bull. 14 (1971), 121–124.
Sh. Rezapour and R. Hamlbarani, Some notes on the paper: “Cone metric spaces and fixed point theorems of contractive mappings” [J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476; by L.-G. Huang and X. Zhang, J. Math. Anal. Appl. 345 (2008), no. 2, 719–724.
S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), no. 3, 258–266.
S. Sedghi and N. V. Dung, Fixed point theorems on S-metric space, Mat. Vesnik 66(1) (2014), 113–124.
S. Sedghi, N. Shobe and T. Došenović, Fixed point results in S-metric spaces, Nonlinear Funct. Anal. Appl. 20(1) (2015), 55–67.
S. Sedghi et al., Common fixed point theorems for contractive mappings satisfying Φ-maps in S-metric spaces, Acta Univ. Sapientiae Math. 8 (2016), no. 2, 298–311.
N. Tas and N. Yilmaz Ozgur, New generalized fixed point results on Sb-metric spaces, arxiv:1703.01868v2 [math.gn] 17 apr. 2017.
J. S. Vandergraft, Newton‘s method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967), 406–432.
P. P. Zabrejko, K-metric and K-normed linear spaces: survey, Collect. Math. 48 (1997), no. 4-6, 825–859.
Most read articles by the same author(s)
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
Similar Articles
- Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Violeta Petkova, Spectral results for operators commuting with translations on Banach spaces of sequences on Zᴷ and Z⺠, CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- L.T. Rachdi, A. Rouz, Homogeneous Besov spaces associated with the spherical mean operator , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Mahmoud Benkhalifa, Note on the \(F_{0}\)-spaces , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.











