Energy transfer in open quantum systems weakly coupled with two reservoirs
-
Franco Fagnola
franco.fagnola@polimi.it
-
Damiano Poletti
damiano.poletti@polimi.it
-
Emanuela Sasso
sasso@dima.unige.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000100121Abstract
We show that the energy transfer through an open quantum system with non-degenerate Hamiltonian weakly coupled with two reservoirs in equilibrium is approximately proportional to the difference of their temperatures unless both temperatures are small.
Keywords
L. Accardi, F. Fagnola, and R. Quezada, “On three new principles in non-equilibrium statistical mechanics and Markov semigroups of weak coupling limit type”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 19, no. 2, 1650009, 2016. DOI: 10.1142/S0219025716500090.
L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum theory and its stochastic limit, Springer- Verlag, Berlin, 2002.
I. Ya. Aref‘eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic Limit Method and Interference in Quantum Many Particle Systems”, Teor. Mat. Fiz., vol. 185, pp. 388–408, 2015. DOI: 10.1007/s11232-015-0296-9
G. Basile, and S. Olla, “Energy diffusion in harmonic system with conservative noise”, J. Stat. Phys., vol. 155, pp. 1126–1142, 2014. DOI: 10.1007/s10955-013-0908-4
F. Benatti, R. Floreanini, and L. Memarzadeh, “Bath assisted transport in a three-site spin chain: global vs local approach”, Phys. Rev. A, vol. 102, 042219-1–042219-14, 2020. DOI: 10.1103/PhysRevA.102.042219
G. Benenti, G. Casati, T. Prosen, and D. Rossini, “Negative differential conductivity in far-from-equilibrium quantum spin chains”, EPL, vol. 85, 37001, 2009. DOI: 10.1209/0295- 5075/85/37001
C. Bernardin, and S. Olla, “Fourier‘s Law for a Microscopic Model of Heat Conduction”, J. Stat. Phys., vol. 121, pp. 271–289, 2005. DOI: 10.1007/s10955-005-7578-9
R. Carbone, E. Sasso, and V. Umanit`a, “Structure of generic quantum Markov semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 20, no. 2, 1750012, 2017. DOI: 10.1142/S0219025717500126
J. DereziÅ„ski, and W. Roeck, “Extended Weak Coupling Limit for Pauli-Fierz Operators”, Comm. Math. Phys., vol. 279, pp. 1–30, 2008. DOI: 10.1007/s00220-008-0419-3
J. DereziÅ„ski, W. Roeck, and C. Maes, “Fluctuations of quantum currents and unravelings of master equations”, J. Stat. Phys., vol. 131, pp. 341–356, 2008. DOI: 10.1007/s10955-008- 9500-8
J. Deschamps, F. Fagnola, E. Sasso, and V. Umanit`a, “Structure of uniformly continuous quantum Markov semigroups”, Rev. Math. Phys., vol. 28, no. 1, 1650003, 2016. DOI: 10.1142/S0129055X16500033
A. Dhar, and H. Spohn, “Fourier‘s law based on microscopic dynamics”, C. R. Phys., vol. 20, pp. 393–401, 2019. DOI: 10.1016/j.crhy.2019.08.004
E. B. Davies, “Markovian Master Equations”, Comm. Math. Phys., vol. 39, pp. 91–110, 1974. projecteuclid.org/euclid.cmp/1103860160
G. S. Engel, T. R. Calhoun, E. L. Read, T. -K. Ahn, T. Mancal, Y. -C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for Wavelike Energy Transfer Through Quantum Coherence in Photosynthetic Systems”, Nature, vol. 446, pp. 782–786, 2007. DOI: 10.1038/na- ture05678
F. Fagnola, and R. Rebolledo, “Entropy Production for Quantum Markov Semigroups”, Commun. Math. Phys., vol. 335, pp. 547–570, 2015. DOI: 10.1007/s00220-015-2320-1
F. Fagnola, and R. Rebolledo, “Entropy production and detailed balance for a class of quantum Markov semigroups”, Open Syst. Inf. Dyn., vol. 22, no. 3, 1550013, 2015. DOI: 10.1142/S1230161215500134
V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, “Completely positive dynamical semigroups of N-level systems”, J. Math. Phys., vol. 17, pp. 821–825, 1976. DOI: 10.1063/1.522979
J. M. Horowitz, and J. M. R. Parrondo, “Entropy production along nonequilibrium quantum jump trajectories”, New J. Phys. vol. 15, 085028, 2013. DOI: 10.1088/1367-2630/15/8/085028
V. Jakšić, C.-A. Pillet, and M. Westrich, “Entropic Fluctuations of Quantum Dynamical Semigroups”. J. Stat. Phys., vol. 154, pp. 153–187, 2014. DOI: 10.1007/s10955-013-0826-5
D. Karevski, and T. Platini, “Quantum nonequilibrium steady states induced by repeated interactions”. Phys. Rev. Lett., vol. 102, 207207-1–20207-4, 2009, DOI: 10.1103/Phys- RevLett.102.207207
E. Langmann, J. L. Lebowitz, V. Mastropietro, and P. Moosavi, “Steady States and Universal Conductance in a Quenched Luttinger Model”, Commun. Math. Phys., vol. 349, pp. 551–582, 2017. DOI: 10.1007/s00220-016-2631-x
G. Lindblad, “On the Generators of Quantum Dynamical Semigroups”, Commun. Math. Phys., vol. 48, pp. 119-130, 1976. DOI: 10.1007/BF01608499
M. Ohya, and D. Petz Quantum Entropy and its Use. Springer-Verlag, Berlin, 1993.
G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from Nature about Solar Light Harvesting”, Nature Chem., vol. 3, pp 763–774, 2011. DOI: doi.org/10.1038/nchem.1145
H. Spohn, and J. L. Lebowitz, “Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs”. In, Advances in Chemical Physics, S.A. Rice (Ed.) pp. 109–142, 1978. DOI: doi.org/10.1002/9780470142578.ch2
A. S. Trusheckin, “On the General Definition of the Production of Entropy in Open Markov Quantum Systems”, J. Math. Sci. (N.Y.), vol. 241, pp. 191–209, 2019. DOI: 10.1007/s10958- 019-04417-4
M. Vanicat, L. Zadnik, and T. Prosen, “Integrable trotterization: local conservation laws and boundary driving”, Phys. Rev. Lett. vol.121, 030606-1–030606-6, 2018. DOI: 10.1103/Phys- RevLett.121.030606
Similar Articles
- Ana Fuenzalida, Alicia Labra, Cristian Mallol, On Quasi orthogonal Bernstein Jordan algebras , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- William Dimbour, Jean-Claude Mado, S-asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Frederico Furtado, Felipe Pereira, On the Scale Up Problem for Two-Phase Flow in Petroleum Reservoirs , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Ziqi Sun, Conjectures in Inverse Boundary Value Problems for Quasilinear Elliptic Equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- H. O. Fattorini, Regular and Strongly Regular Time and Norm Optimal Controls , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Martin Bohner, Julius Heim, Ailian Liu, Solow models on time scales , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Kaïs Ammari, Georgi Vodev, Boundary Stabilization of the Transmission Problem for the Bernoulli-Euler Plate Equation , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.