Energy transfer in open quantum systems weakly coupled with two reservoirs
-
Franco Fagnola
franco.fagnola@polimi.it
-
Damiano Poletti
damiano.poletti@polimi.it
-
Emanuela Sasso
sasso@dima.unige.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000100121Abstract
We show that the energy transfer through an open quantum system with non-degenerate Hamiltonian weakly coupled with two reservoirs in equilibrium is approximately proportional to the difference of their temperatures unless both temperatures are small.
Keywords
L. Accardi, F. Fagnola, and R. Quezada, “On three new principles in non-equilibrium statistical mechanics and Markov semigroups of weak coupling limit type”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 19, no. 2, 1650009, 2016. DOI: 10.1142/S0219025716500090.
L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum theory and its stochastic limit, Springer- Verlag, Berlin, 2002.
I. Ya. Aref‘eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic Limit Method and Interference in Quantum Many Particle Systems”, Teor. Mat. Fiz., vol. 185, pp. 388–408, 2015. DOI: 10.1007/s11232-015-0296-9
G. Basile, and S. Olla, “Energy diffusion in harmonic system with conservative noise”, J. Stat. Phys., vol. 155, pp. 1126–1142, 2014. DOI: 10.1007/s10955-013-0908-4
F. Benatti, R. Floreanini, and L. Memarzadeh, “Bath assisted transport in a three-site spin chain: global vs local approach”, Phys. Rev. A, vol. 102, 042219-1–042219-14, 2020. DOI: 10.1103/PhysRevA.102.042219
G. Benenti, G. Casati, T. Prosen, and D. Rossini, “Negative differential conductivity in far-from-equilibrium quantum spin chains”, EPL, vol. 85, 37001, 2009. DOI: 10.1209/0295- 5075/85/37001
C. Bernardin, and S. Olla, “Fourier‘s Law for a Microscopic Model of Heat Conduction”, J. Stat. Phys., vol. 121, pp. 271–289, 2005. DOI: 10.1007/s10955-005-7578-9
R. Carbone, E. Sasso, and V. Umanit`a, “Structure of generic quantum Markov semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 20, no. 2, 1750012, 2017. DOI: 10.1142/S0219025717500126
J. DereziÅ„ski, and W. Roeck, “Extended Weak Coupling Limit for Pauli-Fierz Operators”, Comm. Math. Phys., vol. 279, pp. 1–30, 2008. DOI: 10.1007/s00220-008-0419-3
J. DereziÅ„ski, W. Roeck, and C. Maes, “Fluctuations of quantum currents and unravelings of master equations”, J. Stat. Phys., vol. 131, pp. 341–356, 2008. DOI: 10.1007/s10955-008- 9500-8
J. Deschamps, F. Fagnola, E. Sasso, and V. Umanit`a, “Structure of uniformly continuous quantum Markov semigroups”, Rev. Math. Phys., vol. 28, no. 1, 1650003, 2016. DOI: 10.1142/S0129055X16500033
A. Dhar, and H. Spohn, “Fourier‘s law based on microscopic dynamics”, C. R. Phys., vol. 20, pp. 393–401, 2019. DOI: 10.1016/j.crhy.2019.08.004
E. B. Davies, “Markovian Master Equations”, Comm. Math. Phys., vol. 39, pp. 91–110, 1974. projecteuclid.org/euclid.cmp/1103860160
G. S. Engel, T. R. Calhoun, E. L. Read, T. -K. Ahn, T. Mancal, Y. -C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for Wavelike Energy Transfer Through Quantum Coherence in Photosynthetic Systems”, Nature, vol. 446, pp. 782–786, 2007. DOI: 10.1038/na- ture05678
F. Fagnola, and R. Rebolledo, “Entropy Production for Quantum Markov Semigroups”, Commun. Math. Phys., vol. 335, pp. 547–570, 2015. DOI: 10.1007/s00220-015-2320-1
F. Fagnola, and R. Rebolledo, “Entropy production and detailed balance for a class of quantum Markov semigroups”, Open Syst. Inf. Dyn., vol. 22, no. 3, 1550013, 2015. DOI: 10.1142/S1230161215500134
V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, “Completely positive dynamical semigroups of N-level systems”, J. Math. Phys., vol. 17, pp. 821–825, 1976. DOI: 10.1063/1.522979
J. M. Horowitz, and J. M. R. Parrondo, “Entropy production along nonequilibrium quantum jump trajectories”, New J. Phys. vol. 15, 085028, 2013. DOI: 10.1088/1367-2630/15/8/085028
V. Jakšić, C.-A. Pillet, and M. Westrich, “Entropic Fluctuations of Quantum Dynamical Semigroups”. J. Stat. Phys., vol. 154, pp. 153–187, 2014. DOI: 10.1007/s10955-013-0826-5
D. Karevski, and T. Platini, “Quantum nonequilibrium steady states induced by repeated interactions”. Phys. Rev. Lett., vol. 102, 207207-1–20207-4, 2009, DOI: 10.1103/Phys- RevLett.102.207207
E. Langmann, J. L. Lebowitz, V. Mastropietro, and P. Moosavi, “Steady States and Universal Conductance in a Quenched Luttinger Model”, Commun. Math. Phys., vol. 349, pp. 551–582, 2017. DOI: 10.1007/s00220-016-2631-x
G. Lindblad, “On the Generators of Quantum Dynamical Semigroups”, Commun. Math. Phys., vol. 48, pp. 119-130, 1976. DOI: 10.1007/BF01608499
M. Ohya, and D. Petz Quantum Entropy and its Use. Springer-Verlag, Berlin, 1993.
G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from Nature about Solar Light Harvesting”, Nature Chem., vol. 3, pp 763–774, 2011. DOI: doi.org/10.1038/nchem.1145
H. Spohn, and J. L. Lebowitz, “Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs”. In, Advances in Chemical Physics, S.A. Rice (Ed.) pp. 109–142, 1978. DOI: doi.org/10.1002/9780470142578.ch2
A. S. Trusheckin, “On the General Definition of the Production of Entropy in Open Markov Quantum Systems”, J. Math. Sci. (N.Y.), vol. 241, pp. 191–209, 2019. DOI: 10.1007/s10958- 019-04417-4
M. Vanicat, L. Zadnik, and T. Prosen, “Integrable trotterization: local conservation laws and boundary driving”, Phys. Rev. Lett. vol.121, 030606-1–030606-6, 2018. DOI: 10.1103/Phys- RevLett.121.030606
Similar Articles
- Thomas Blesgen, Two-Phase Structures as Singular Limit of a one-dimensional Discrete Model , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Sorin G. Gal, Remarks on the generation of semigroups of nonlinear operators on p-Fréchet spaces, 0 < p < 1 , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Alain Miranville, On an anisotropic Allen-Cahn system , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Laurent Amour, Jérémy Faupin, The confined hydrogenoid ion in non-relativistic quantum electrodynamics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.