Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem
-
Abolfazl Sadeghi
sadeghi31587@mail.com
-
Ghasem Alizadeh Afrouzi
afrouzi@umz.ac.ir
-
Maryam Mirzapour
m.mirzapour@cfu.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.541Abstract
In this article, we want to discuss variational methods such as the Mountain pass theorem and the Symmetric Mountain pass theorem, without the Ambrosetti-Rabinowitz condition. We prove the existence and multiplicity of nontrivial weak solutions for the problem of the following form
\[ \begin{align*} \begin{cases} -\left(\alpha-\beta \displaystyle\int_\Omega \frac{1}{\varphi(x)} |\nabla \upsilon|^{\varphi(x)} \, dx\right) \Delta_{\varphi(x)} \upsilon + |\upsilon|^{\psi(x)-2}\upsilon \\ \hfill = \lambda \eta(x, \upsilon), & x \in \Omega, \\ \left(\alpha-\beta \displaystyle\int_{\partial \Omega} \frac{1}{\varphi(x)} |\nabla \upsilon|^{\varphi(x)} \, dx\right) |\nabla \upsilon|^{\varphi(x)-2} \frac{\partial \upsilon}{\partial \nu} = 0, & x \in \partial \Omega, \end{cases} \end{align*} \] where \(\alpha \geq \beta > 0\), \(\Delta_{\varphi(x)} \upsilon\) is the \(\varphi(x)\)-Laplacian operator, \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\) with smooth boundary \(\partial \Omega\), and \(\nu\) is the outer unit normal to \(\partial \Omega\). Additionally, \(\varphi(x), \psi(x) \in C(\bar{\Omega})\) with \(1 < \varphi(x) < N,~ \varphi(x) < \psi(x) < \varphi^*(x) := \frac{N \varphi(x)}{N- \varphi(x)}\), \(\lambda > 0\) is a real parameter, and \(\eta(x, t) \in C(\bar{\Omega} \times \mathbb{R}, \mathbb{R})\).
Keywords
Mathematics Subject Classification:
E. Acerbi and G. Mingione, “Gradient estimates for the p(x)-Laplacean system,” J. Reine Angew. Math., vol. 584, pp. 117–148, 2005, doi: 10.1515/crll.2005.2005.584.117.
G. A. Afrouzi and M. Mirzapour, “Existence and multiplicity of solutions for nonlocal (overrightarrow{p}(x))-Laplacian problem", Taiwanese J. Math., vol. 18, no. 1, pp. 219–236, 2014, doi: 10.11650/tjm.18.2014.2596.
G. A. Afrouzi, M. Mirzapour, and N. T. Chung, “Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation,” Rend. Semin. Mat. Univ. Padova, vol. 136, pp. 95–109, 2016, doi: 10.4171/RSMUP/136-8.
G. A. Afrouzi, M. Mirzapour, and V. D. Rădulescu, “Qualitative analysis of solutions for a class of anisotropic elliptic equations with variable exponent,” Proc. Edinb. Math. Soc. (2), vol. 59, no. 3, pp. 541–557, 2016, doi: 10.1017/S0013091515000346.
G. A. Afrouzi, M. Mirzapour, and V. D. Rădulescu, “Variational analysis of anisotropic Schrödinger equations without Ambrosetti-Rabinowitz-type condition,” Z. Angew. Math. Phys., vol. 69, no. 1, 2018, Art. ID 9, doi: 10.1007/s00033-017-0900-y.
G. A. Afrouzi, N. T. Chung, and Z. Naghizadeh, “Multiple solutions for p(x)-Kirchhoff type problems with Robin boundary conditions,” Electron. J. Differential Equations, 2022, Art. ID 24, doi: 10.58997/ejde.2022.24.
M. Alimohammady and F. Fattahi, “Existence of solutions to hemivariational inequalities involving the p(x)-biharmonic operator,” Electron. J. Differential Equations, 2015, Art. ID 79.
A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Functional Analysis, vol. 14, pp. 349–381, 1973, doi: 10.1016/0022- 1236(73)90051-7.
M. Avci, R. A. Ayazoglu, and B. Cekic, “Solutions of an anisotropic nonlocal problem involving variable exponent,” Adv. Nonlinear Anal., vol. 2, no. 3, pp. 325–338, 2013, doi: 10.1515/anona- 2013-0010.
R. Ayazoglu, S. Akbulut, and E. Akkoyunlu, “Existence of multiple solutions of Schrödinger- Kirchhoff-type equations involving the p(.)-Laplacian in RN,” Math. Methods Appl. Sci., vol. 43, no. 17, pp. 9598–9614, 2020, doi: 10.1002/mma.6626.
R. Ayazoğlu, S. Akbulut, and E. Akkoyunlu, “Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations,” Turkish J. Math., vol. 46, no. 4, pp. 1342–1359, 2022, doi: 10.55730/1300-0098.3164.
A. Bensedik, “On existence results for an anisotropic elliptic equation of Kirchhoff-type by a monotonicity method,” Funkcial. Ekvac., vol. 57, no. 3, pp. 489–502, 2014, doi: 10.1619/fesi.57.489.
J. Chabrowski and Y. Fu, “Existence of solutions for p(x)-Laplacian problems on a bounded domain,” J. Math. Anal. Appl., vol. 306, no. 2, pp. 604–618, 2005, doi: 10.1016/j.jmaa.2004.10.028.
B. Cheng, “A new result on multiplicity of nontrivial solutions for the nonhomogenous Schrödinger-Kirchhoff type problem in RN,” Mediterr. J. Math., vol. 13, no. 3, pp. 1099– 1116, 2016, doi: 10.1007/s00009-015-0527-1.
N. T. Chung, “Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities,” Electron. J. Qual. Theory Differ. Equ., 2012, Art. ID 42.
D. G. Costa and O. H. Miyagaki, “Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains,” J. Math. Anal. Appl., vol. 193, no. 3, pp. 737–755, 1995, doi: 10.1006/jmaa.1995.1264.
G. Dai and R. Hao, “Existence of solutions for a p(x)-Kirchhoff-type equation,” J. Math. Anal. Appl., vol. 359, no. 1, pp. 275–284, 2009, doi: 10.1016/j.jmaa.2009.05.031.
G. Dai and R. Ma, “Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data,” Nonlinear Anal. Real World Appl., vol. 12, no. 5, pp. 2666–2680, 2011, doi: 10.1016/j.nonrwa.2011.03.013.
M. Dreher, “The Kirchhoff equation for the p-Laplacian,” Rend. Semin. Mat. Univ. Politec. Torino, vol. 64, no. 2, pp. 217–238, 2006.
X.-L. Fan and Q.-H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear Anal., vol. 52, no. 8, pp. 1843–1852, 2003, doi: 10.1016/S0362-546X(02)00150-5.
X. Fan, “On nonlocal p(x)-Laplacian Dirichlet problems,” Nonlinear Anal., vol. 72, no. 7-8, pp. 3314–3323, 2010, doi: 10.1016/j.na.2009.12.012.
W. Guo, J. Yang, and J. Zhang, “Existence results of nontrivial solutions for a new p(x)- biharmonic problem with weight function,” AIMS Math., vol. 7, no. 5, pp. 8491–8509, 2022, doi: 10.3934/math.2022473.
M. K. Hamdani, A. Harrabi, F. Mtiri, and D. D. Repovš, “Existence and multiplicity results for a new p(x)-Kirchhoff problem,” Nonlinear Anal., vol. 190, 2020, Art. ID 1111598, doi: 10.1016/j.na.2019.111598.
S. Heidarkhani, “Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems,” Ann. Polon. Math., vol. 107, no. 2, pp. 133–152, 2013, doi: 10.4064/ap107- 2-3.
S. Heidarkhani and J. Henderson, “Infinitely many solutions for nonlocal elliptic systems of (p1, . . . , pn)-Kirchhoff type,” Electron. J. Differential Equations, 2012, Art. ID 69.
S. Heidarkhani, S. Khademloo, and A. Solimaninia, “Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem,” Port. Math., vol. 71, no. 1, pp. 39–61, 2014, doi: 10.4171/PM/1940.
N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, ser. SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988, vol. 8, doi: 10.1137/1.9781611970845.
G. Kirchhoff, Vorlesungen über Mechanik. B.G. Teubner, Leipzig, Germany, 1883.
S. Liang, H. Pu, and V. D. Rădulescu, “High perturbations of critical fractional Kirchhoff equations with logarithmic nonlinearity,” Appl. Math. Lett., vol. 116, 2021, Art. ID 107027, doi: 10.1016/j.aml.2021.107027.
J.-L. Lions, “On some questions in boundary value problems of mathematical physics,” in Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), ser. North-Holland Math. Stud. North-Holland, Amsterdam-New York, 1978, vol. 30, pp. 284–346.
M. Mirzapour, “Existence and multiplicity of solutions for Neumann boundary value problems involving nonlocal p(x)-Laplacian equations,” International Journal of Nonlinear Analysis and Applications, vol. 14, no. 8, pp. 237–247, 2023, doi: 10.22075/ijnaa.2022.7212.
J. Musielak, Orlicz spaces and modular spaces, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983, vol. 1034, doi: 10.1007/BFb0072210.
P. Pucci, M. Xiang, and B. Zhang, “Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN ,” Calc. Var. Partial Differential Equations, vol. 54, no. 3, pp. 2785–2806, 2015, doi: 10.1007/s00526-015-0883-5.
X. H. Tang, “Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity,” J. Math. Anal. Appl., vol. 401, no. 1, pp. 407–415, 2013, doi: 10.1016/j.jmaa.2012.12.035.
N. Thanh Chung, “Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities,” Complex Var. Elliptic Equ., vol. 58, no. 12, pp. 1637–1646, 2013, doi: 10.1080/17476933.2012.701289.
M. Xiang, B. Zhang, and M. Ferrara, “Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian,” J. Math. Anal. Appl., vol. 424, no. 2, pp. 1021–1041, 2015, doi: 10.1016/j.jmaa.2014.11.055.
Q.-L. Xie, X.-P. Wu, and C.-L. Tang, “Existence of solutions for Kirchhoff type equations,” Electron. J. Differential Equations, 2015, Art. ID 47.
A. Zang, “p(x)-Laplacian equations satisfying Cerami condition,” J. Math. Anal. Appl., vol. 337, no. 1, pp. 547–555, 2008, doi: 10.1016/j.jmaa.2007.04.007.
Most read articles by the same author(s)
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
Similar Articles
- Stanislas Ouaro, Weak and entropy solutions for a class of nonlinear inhomogeneous Neumann boundary value problem with variable exponent , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Mouffak Benchohra, Fatima-Zohra Mostefai, Weak Solutions of Fractional Order Pettis Integral Inclusions with Multiple Time Delay in Banach Spaces , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- B. K. Tyagi, Harsh V. S. Chauhan, On generalized closed sets in generalized topological spaces , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Adrian Petrus¸el, Ioan A. Rus, Marcel Adrian S¸erban, Fixed Points for Operators on Generalized Metric Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Sadeghi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.