Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2603.541

Abstract

In this article, we want to discuss variational methods such as the Mountain pass theorem and the Symmetric Mountain pass theorem, without the Ambrosetti-Rabinowitz condition. We prove the existence and multiplicity of nontrivial weak solutions for the problem of the following form
\[ \begin{align*} \begin{cases} -\left(\alpha-\beta \displaystyle\int_\Omega \frac{1}{\varphi(x)} |\nabla \upsilon|^{\varphi(x)} \, dx\right) \Delta_{\varphi(x)} \upsilon + |\upsilon|^{\psi(x)-2}\upsilon \\ \hfill = \lambda \eta(x, \upsilon), & x \in \Omega, \\ \left(\alpha-\beta \displaystyle\int_{\partial \Omega} \frac{1}{\varphi(x)} |\nabla \upsilon|^{\varphi(x)} \, dx\right) |\nabla \upsilon|^{\varphi(x)-2} \frac{\partial \upsilon}{\partial \nu} = 0, & x \in \partial \Omega, \end{cases} \end{align*} \] where \(\alpha \geq \beta > 0\), \(\Delta_{\varphi(x)} \upsilon\) is the \(\varphi(x)\)-Laplacian operator, \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\) with smooth boundary \(\partial \Omega\), and \(\nu\) is the outer unit normal to \(\partial \Omega\). Additionally, \(\varphi(x), \psi(x) \in C(\bar{\Omega})\) with \(1 < \varphi(x) < N,~ \varphi(x) < \psi(x) < \varphi^*(x) := \frac{N \varphi(x)}{N- \varphi(x)}\), \(\lambda > 0\) is a real parameter, and \(\eta(x, t) \in C(\bar{\Omega} \times \mathbb{R}, \mathbb{R})\).

Keywords

Generalized Lebesgue-Sobolev spaces , weak solutions , mountain pass theorem , symmetric mountain pass theorem

Mathematics Subject Classification:

35J60 , 35J20
  • Pages: 541–558
  • Date Published: 2024-12-13
  • Vol. 26 No. 3 (2024)

E. Acerbi and G. Mingione, “Gradient estimates for the p(x)-Laplacean system,” J. Reine Angew. Math., vol. 584, pp. 117–148, 2005, doi: 10.1515/crll.2005.2005.584.117.

G. A. Afrouzi and M. Mirzapour, “Existence and multiplicity of solutions for nonlocal (overrightarrow{p}(x))-Laplacian problem", Taiwanese J. Math., vol. 18, no. 1, pp. 219–236, 2014, doi: 10.11650/tjm.18.2014.2596.

G. A. Afrouzi, M. Mirzapour, and N. T. Chung, “Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation,” Rend. Semin. Mat. Univ. Padova, vol. 136, pp. 95–109, 2016, doi: 10.4171/RSMUP/136-8.

G. A. Afrouzi, M. Mirzapour, and V. D. Rădulescu, “Qualitative analysis of solutions for a class of anisotropic elliptic equations with variable exponent,” Proc. Edinb. Math. Soc. (2), vol. 59, no. 3, pp. 541–557, 2016, doi: 10.1017/S0013091515000346.

G. A. Afrouzi, M. Mirzapour, and V. D. Rădulescu, “Variational analysis of anisotropic Schrödinger equations without Ambrosetti-Rabinowitz-type condition,” Z. Angew. Math. Phys., vol. 69, no. 1, 2018, Art. ID 9, doi: 10.1007/s00033-017-0900-y.

G. A. Afrouzi, N. T. Chung, and Z. Naghizadeh, “Multiple solutions for p(x)-Kirchhoff type problems with Robin boundary conditions,” Electron. J. Differential Equations, 2022, Art. ID 24, doi: 10.58997/ejde.2022.24.

M. Alimohammady and F. Fattahi, “Existence of solutions to hemivariational inequalities involving the p(x)-biharmonic operator,” Electron. J. Differential Equations, 2015, Art. ID 79.

A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Functional Analysis, vol. 14, pp. 349–381, 1973, doi: 10.1016/0022- 1236(73)90051-7.

M. Avci, R. A. Ayazoglu, and B. Cekic, “Solutions of an anisotropic nonlocal problem involving variable exponent,” Adv. Nonlinear Anal., vol. 2, no. 3, pp. 325–338, 2013, doi: 10.1515/anona- 2013-0010.

R. Ayazoglu, S. Akbulut, and E. Akkoyunlu, “Existence of multiple solutions of Schrödinger- Kirchhoff-type equations involving the p(.)-Laplacian in RN,” Math. Methods Appl. Sci., vol. 43, no. 17, pp. 9598–9614, 2020, doi: 10.1002/mma.6626.

R. Ayazoğlu, S. Akbulut, and E. Akkoyunlu, “Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations,” Turkish J. Math., vol. 46, no. 4, pp. 1342–1359, 2022, doi: 10.55730/1300-0098.3164.

A. Bensedik, “On existence results for an anisotropic elliptic equation of Kirchhoff-type by a monotonicity method,” Funkcial. Ekvac., vol. 57, no. 3, pp. 489–502, 2014, doi: 10.1619/fesi.57.489.

J. Chabrowski and Y. Fu, “Existence of solutions for p(x)-Laplacian problems on a bounded domain,” J. Math. Anal. Appl., vol. 306, no. 2, pp. 604–618, 2005, doi: 10.1016/j.jmaa.2004.10.028.

B. Cheng, “A new result on multiplicity of nontrivial solutions for the nonhomogenous Schrödinger-Kirchhoff type problem in RN,” Mediterr. J. Math., vol. 13, no. 3, pp. 1099– 1116, 2016, doi: 10.1007/s00009-015-0527-1.

N. T. Chung, “Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities,” Electron. J. Qual. Theory Differ. Equ., 2012, Art. ID 42.

D. G. Costa and O. H. Miyagaki, “Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains,” J. Math. Anal. Appl., vol. 193, no. 3, pp. 737–755, 1995, doi: 10.1006/jmaa.1995.1264.

G. Dai and R. Hao, “Existence of solutions for a p(x)-Kirchhoff-type equation,” J. Math. Anal. Appl., vol. 359, no. 1, pp. 275–284, 2009, doi: 10.1016/j.jmaa.2009.05.031.

G. Dai and R. Ma, “Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data,” Nonlinear Anal. Real World Appl., vol. 12, no. 5, pp. 2666–2680, 2011, doi: 10.1016/j.nonrwa.2011.03.013.

M. Dreher, “The Kirchhoff equation for the p-Laplacian,” Rend. Semin. Mat. Univ. Politec. Torino, vol. 64, no. 2, pp. 217–238, 2006.

X.-L. Fan and Q.-H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear Anal., vol. 52, no. 8, pp. 1843–1852, 2003, doi: 10.1016/S0362-546X(02)00150-5.

X. Fan, “On nonlocal p(x)-Laplacian Dirichlet problems,” Nonlinear Anal., vol. 72, no. 7-8, pp. 3314–3323, 2010, doi: 10.1016/j.na.2009.12.012.

W. Guo, J. Yang, and J. Zhang, “Existence results of nontrivial solutions for a new p(x)- biharmonic problem with weight function,” AIMS Math., vol. 7, no. 5, pp. 8491–8509, 2022, doi: 10.3934/math.2022473.

M. K. Hamdani, A. Harrabi, F. Mtiri, and D. D. Repovš, “Existence and multiplicity results for a new p(x)-Kirchhoff problem,” Nonlinear Anal., vol. 190, 2020, Art. ID 1111598, doi: 10.1016/j.na.2019.111598.

S. Heidarkhani, “Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems,” Ann. Polon. Math., vol. 107, no. 2, pp. 133–152, 2013, doi: 10.4064/ap107- 2-3.

S. Heidarkhani and J. Henderson, “Infinitely many solutions for nonlocal elliptic systems of (p1, . . . , pn)-Kirchhoff type,” Electron. J. Differential Equations, 2012, Art. ID 69.

S. Heidarkhani, S. Khademloo, and A. Solimaninia, “Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem,” Port. Math., vol. 71, no. 1, pp. 39–61, 2014, doi: 10.4171/PM/1940.

N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, ser. SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988, vol. 8, doi: 10.1137/1.9781611970845.

G. Kirchhoff, Vorlesungen über Mechanik. B.G. Teubner, Leipzig, Germany, 1883.

S. Liang, H. Pu, and V. D. Rădulescu, “High perturbations of critical fractional Kirchhoff equations with logarithmic nonlinearity,” Appl. Math. Lett., vol. 116, 2021, Art. ID 107027, doi: 10.1016/j.aml.2021.107027.

J.-L. Lions, “On some questions in boundary value problems of mathematical physics,” in Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), ser. North-Holland Math. Stud. North-Holland, Amsterdam-New York, 1978, vol. 30, pp. 284–346.

M. Mirzapour, “Existence and multiplicity of solutions for Neumann boundary value problems involving nonlocal p(x)-Laplacian equations,” International Journal of Nonlinear Analysis and Applications, vol. 14, no. 8, pp. 237–247, 2023, doi: 10.22075/ijnaa.2022.7212.

J. Musielak, Orlicz spaces and modular spaces, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983, vol. 1034, doi: 10.1007/BFb0072210.

P. Pucci, M. Xiang, and B. Zhang, “Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN ,” Calc. Var. Partial Differential Equations, vol. 54, no. 3, pp. 2785–2806, 2015, doi: 10.1007/s00526-015-0883-5.

X. H. Tang, “Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity,” J. Math. Anal. Appl., vol. 401, no. 1, pp. 407–415, 2013, doi: 10.1016/j.jmaa.2012.12.035.

N. Thanh Chung, “Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities,” Complex Var. Elliptic Equ., vol. 58, no. 12, pp. 1637–1646, 2013, doi: 10.1080/17476933.2012.701289.

M. Xiang, B. Zhang, and M. Ferrara, “Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian,” J. Math. Anal. Appl., vol. 424, no. 2, pp. 1021–1041, 2015, doi: 10.1016/j.jmaa.2014.11.055.

Q.-L. Xie, X.-P. Wu, and C.-L. Tang, “Existence of solutions for Kirchhoff type equations,” Electron. J. Differential Equations, 2015, Art. ID 47.

A. Zang, “p(x)-Laplacian equations satisfying Cerami condition,” J. Math. Anal. Appl., vol. 337, no. 1, pp. 547–555, 2008, doi: 10.1016/j.jmaa.2007.04.007.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2024-12-13

How to Cite

[1]
A. Sadeghi, G. A. Afrouzi, and M. Mirzapour, “Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem”, CUBO, vol. 26, no. 3, pp. 541–558, Dec. 2024.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.