Independent partial domination
-
L. Philo Nithya
philo.nithya@res.christuniversity.in
-
Joseph Varghese Kureethara
frjoseph@christuniversity.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300411Abstract
For \(p\in(0,1]\), a set \(S\subseteq V\) is said to \(p\)-dominate or partially dominate a graph \(G = (V, E)\) if \(\frac{|N[S]|}{|V|}\geq p\). The minimum cardinality among all \(p\)-dominating sets is called the \(p\)-domination number and it is denoted by \(\gamma_{p}(G)\). Analogously, the independent partial domination (\(i_p(G)\)) is introduced and studied here independently and in relation with the classical domination. Further, the partial independent set and the partial independence number \(\beta_p(G)\) are defined and some of their properties are presented. Finally, the partial domination chain is established as \(\gamma_p(G)\leq i_p(G)\leq \beta_p(G) \leq \Gamma_p(G)\).
Keywords
R. B. Allan and R. Laskar, “On Domination and Independent Domination Numbers of a Graph”, Discrete Math., vol. 23, no. 2, pp. 73–76, 1978.
C. Bazgan, L. Brankovic, K. Casel and H. Fernau, “Domination chain: Characterisation, classical complexity, parameterised complexity and approximability”, Discrete Appl. Math., vol. 280, pp. 23–42, 2020.
B. M. Case, S. T. Hedetniemi, R. C. Laskar and D. J. Lipman, “Partial domination in graphs”, Congr. Numer., vol. 228, pp. 85–96, 2017.
Y. Caro and A. Hansberg, “Partial domination–the isolation number of a graph”, Filomat, vol. 31, no. 12, pp. 3925–3944, 2017.
E. J. Cockayne, S. T. Hedetniemi and D. J. Miller, “Properties of hereditary hypergraphs and middle graphs”, Canad. Math. Bull., vol. 21, no. 4, pp. 461–468, 1978.
A. Das, “Partial domination in graphs”, Iran. J. Sci. Technol. Trans. A Sci., vol. 43, no. 4, pp. 1713–1718, 2019.
J. E. Dunbar, D. G. Hoffman, R. C. Laskar and L. R. Markus, α-Domination, Discrete Math., vol. 211, no. 1–3, pp. 11–26, 2000.
O. Favaron, S. M. Hedetniemi, S. T. Hedetniemi and D. F. Rall, “On k-dependent domination”, Discrete Math., vol. 249, nos. 1–3, pp. 83–94, 2002.
O. Favaron and P. Kaemawichanurat, “Inequalities between the K_k-isolation number and the Independent K_k-isolation number of a graph”, Discrete Appl. Math., vol. 289, pp. 93–97, 2021.
W. Goddard and M. A. Henning, “Independent domination in graphs: a survey and recent results”, Discrete Math., vol. 313, no. 7, pp. 839–854, 2013.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, 464, CRC Press, Boca Raton, 1998.
R. D. Macapodi and R. T. Isla, “Total partial domination in graphs under some binary operations”, Eur. J. Pure Appl. Math., vol. 12, no. 4, pp. 1643–1655, 2019.
R. D. Macapodi, R. I. Isla and S. R. Canoy, “Partial domination in the join, corona, lexicographic and cartesian products of graphs”, Adv. Appl. Discrete Math., vol. 20, no. 2, pp. 277–293, 2019.
L. P. Nithya and J. V. Kureethara, “On Some Properties of Partial Dominating Sets”, AIP Conference Proceedings, vol. 2236, no. 1, 060004, 2020.
L. P. Nithya and J. V. Kureethara, “Partial domination in prisms of graphs”, Ital. J. Pure Appl. Math., to be published.
Similar Articles
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Seppo Heikkila, Fixed Point Results for Set-Valued and Single-Valued Mappings in Ordered Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Shunsuke Kaji, The Extension of the Formula by Dupire , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- M. Lellis Thivagar, S. Athisaya Ponmani, R. Raja Rajeswari, Erdal Ekici, On Some Bitopological ð›¾-Separation Axioms , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Cemil Tunç, Hilmi Ergören, Uniformly boundedness of a class of non-linear differential equations of third order with multiple deviating arguments , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- V´Ä±ctor Ayala, Marcos M. Diniz, Jos´e C.P. Lima, Jos´e M.M. Veloso, Ivan Tribuzy, Wave Front Sets Singularities of Homogeneous Sub-Riemannian Three Dimensional Manifolds , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Xinhou Hua, R´emi Vaillancourt, Prime Factorization of Entire Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.