Independent partial domination
-
L. Philo Nithya
philo.nithya@res.christuniversity.in
-
Joseph Varghese Kureethara
frjoseph@christuniversity.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300411Abstract
For \(p\in(0,1]\), a set \(S\subseteq V\) is said to \(p\)-dominate or partially dominate a graph \(G = (V, E)\) if \(\frac{|N[S]|}{|V|}\geq p\). The minimum cardinality among all \(p\)-dominating sets is called the \(p\)-domination number and it is denoted by \(\gamma_{p}(G)\). Analogously, the independent partial domination (\(i_p(G)\)) is introduced and studied here independently and in relation with the classical domination. Further, the partial independent set and the partial independence number \(\beta_p(G)\) are defined and some of their properties are presented. Finally, the partial domination chain is established as \(\gamma_p(G)\leq i_p(G)\leq \beta_p(G) \leq \Gamma_p(G)\).
Keywords
R. B. Allan and R. Laskar, “On Domination and Independent Domination Numbers of a Graph”, Discrete Math., vol. 23, no. 2, pp. 73–76, 1978.
C. Bazgan, L. Brankovic, K. Casel and H. Fernau, “Domination chain: Characterisation, classical complexity, parameterised complexity and approximability”, Discrete Appl. Math., vol. 280, pp. 23–42, 2020.
B. M. Case, S. T. Hedetniemi, R. C. Laskar and D. J. Lipman, “Partial domination in graphs”, Congr. Numer., vol. 228, pp. 85–96, 2017.
Y. Caro and A. Hansberg, “Partial domination–the isolation number of a graph”, Filomat, vol. 31, no. 12, pp. 3925–3944, 2017.
E. J. Cockayne, S. T. Hedetniemi and D. J. Miller, “Properties of hereditary hypergraphs and middle graphs”, Canad. Math. Bull., vol. 21, no. 4, pp. 461–468, 1978.
A. Das, “Partial domination in graphs”, Iran. J. Sci. Technol. Trans. A Sci., vol. 43, no. 4, pp. 1713–1718, 2019.
J. E. Dunbar, D. G. Hoffman, R. C. Laskar and L. R. Markus, α-Domination, Discrete Math., vol. 211, no. 1–3, pp. 11–26, 2000.
O. Favaron, S. M. Hedetniemi, S. T. Hedetniemi and D. F. Rall, “On k-dependent domination”, Discrete Math., vol. 249, nos. 1–3, pp. 83–94, 2002.
O. Favaron and P. Kaemawichanurat, “Inequalities between the K_k-isolation number and the Independent K_k-isolation number of a graph”, Discrete Appl. Math., vol. 289, pp. 93–97, 2021.
W. Goddard and M. A. Henning, “Independent domination in graphs: a survey and recent results”, Discrete Math., vol. 313, no. 7, pp. 839–854, 2013.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, 464, CRC Press, Boca Raton, 1998.
R. D. Macapodi and R. T. Isla, “Total partial domination in graphs under some binary operations”, Eur. J. Pure Appl. Math., vol. 12, no. 4, pp. 1643–1655, 2019.
R. D. Macapodi, R. I. Isla and S. R. Canoy, “Partial domination in the join, corona, lexicographic and cartesian products of graphs”, Adv. Appl. Discrete Math., vol. 20, no. 2, pp. 277–293, 2019.
L. P. Nithya and J. V. Kureethara, “On Some Properties of Partial Dominating Sets”, AIP Conference Proceedings, vol. 2236, no. 1, 060004, 2020.
L. P. Nithya and J. V. Kureethara, “Partial domination in prisms of graphs”, Ital. J. Pure Appl. Math., to be published.
Similar Articles
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Najja Al-Islam, Diagana space and the gas absorption model , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Matt Insall, Substitutions of the Independent Variable in Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- José Sanabria, Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero, Amalia Gómez, S-paracompactness modulo an ideal , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Bourama Toni, Planar Pseudo-almost Limit Cycles and Applications to solitary Waves , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.