On generalized Hardy spaces associated with singular partial differential operators
-
Amal Ghandouri
amal.ghandouri@fst.utm.tn
-
Hatem Mejjaoli
mejjaoli.hatem@yahoo.fr
-
Slim Omri
slim.omri@fst.utm.tn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.289Abstract
We define and study the Hardy spaces associated with singular partial differential operators. Also, a characterization by mean of atomic decomposition is investigated.
Keywords
Mathematics Subject Classification:
B. Amri, “The Hardy-Littlewood operator associated with the Riemann-Liouville transform”, Indag. Math. (N.S.), vol. 29, no. 5, pp. 1270–1289, 2018. doi: 10.1016/j.indag.2018.05.007
B. Amri and L. Rachdi, “The Littlewood-Paley g-function associated with the Riemann- Liouville operator”, Ann. Univ. Paedagog. Crac. Stud. Math., vol. 12, pp. 31–58, 2013.
C. Baccar, N. Ben Hamadi, and L. Rachdi, “Best approximation for Weierstrass transform connected with Riemann-Liouville operator”, Commun. Math. Anal., vol. 5, no. 1, pp. 65–83, 2008.
C. Baccar, N. Ben Hamadi and S. Omri, “Fourier multipliers associated with singular partial differential operators”, Oper. Matrices, vol. 11, no. 1, pp. 37–53, 2017. doi: 10.7153/oam-11-03
C. Baccar, N. Ben Hamadi and L. T. Rachdi, “Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators”, Int. J. Math. Math. Sci., vol. 2006, Art. ID 086238, 2006. doi: 10.1155/IJMMS/2006/86238
C. Baccar and L. T. Rachdi, “Spaces of DLp-type and a convolution product associated with the Riemann-Liouville operators”, Bull. Math. Anal. Appl., vol. 1, no. 3, pp. 16–41, 2009.
N. Ben Hamadi and L. T. Rachdi, “Weyl transforms associated with the Riemann-Liouville operator”. Int. J. Math. Math. Sci., vol. 2006, Art. ID 094768, 2006. doi: 10.1155/IJMMS/2006/94768
R. Coifman and G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., vol. 83, no. 4, pp. 569–645, 1977. doi: 10.1090/S0002-9904-1977-14325-5
J. A. Fawcett, “Inversion of n-dimensional spherical averages”, SIAM J. Appl. Math., vol. 45, no. 2, pp. 336–341, 1985. doi: 10.1137/0145018
C. Fefferman and E. N. Stein, “Hp spaces of several variables”, Acta Math., vol. 129, no. 3-4, pp. 137–193, 1972. doi: 10.1007/BF02392215
H. Helesten and L. E. Anderson, “An inverse method for the processing of synthetic aper- ture radar data”, Inverse Problems, vol. 3, no. 1, pp. 111–124, 1987. doi: 10.1088/0266- 5611/3/1/013
M. Herberthson, “A numerical implementation of an inverse formula for CARABAS raw Data”. Internal Report D 30430-3.2. National Defense Research Institute, FOA, Box 1165; S-581 11, Sweden, 1986.
K. Hleili, S. Omri and L. T. Rachdi, “Uncertainty principle for the Riemann-Liouville operator”, Cubo, vol. 13, no. 3, pp. 91–115, 2011. doi: 10.4067/s0719-06462011000300006
N. N. Lebedev, Special Functions and Their Applications. New York, USA: Dover Publications, Inc., 1972.
H. Mejjaoli and S. Omri, “Boundedness and compactness of Reimann-Liouville two- wavelet multipliers”, J. Pseudo-Differ. Oper. Appl., vol. 9, no. 2, pp. 189–213, 2018. doi: 10.1007/s11868-018-0235-2
S. Omri and L. T. Rachdi, “An Lp-Lq version of Morgan’s theorem associated with Riemann-Liouville transform”, Int. J. Math. Anal. (Ruse), vol. 1, no. 17-20, pp. 805–824, 2007.
S. Omri and L. T. Rachdi, “Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator”, JIPAM. J. Inequal. Pure Appl. Math., vol. 9, no. 3, Art. ID 88, 2008.
L. T. Rachdi and A. Rouz, “On the range of the Fourier transform connected with Riemann-Liouville operator”, Ann. Math. Blaise Pascal, vol. 16, no. 2, pp. 355–397, 2009. doi: 10.5802/ambp.272
A. Uchiyama, “A maximal function characterization of Hp on the space of homogeneous type”, Trans. Amer. Math. Soc., vol. 262, no. 2, pp. 579–592, 1980. doi: 10.2307/1999848
A. Uchiyama, Hardy Spaces on the Euclidean Space, Springer Monographs in Mathematics, Tokyo, Japan: Springer-Verlag, 2001. doi: 10.1007/978-4-431-67905-9
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Li- brary, Cambridge, UK: Cambridge University Press, 1995.
Similar Articles
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Joachim Toft, Pseudo-differential operators with smooth symbols on modulation spaces , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Elke Wolf, Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Fujisaki Masatoshi, Nonlinear semigroup associated with maximizing operator and large deviation , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Ghandouri et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











