Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold
-
Shamsur Rahman
shamsur@rediffmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100105Abstract
The present paper deals with a study of warped product submanifolds of quasi-Sasakian manifolds and warped product CR-submanifolds of quasi-Sasakian manifolds. We have shown that the warped product of the type \( M = D_{\perp}{\times}{_{y}}{D}_{T}\) does not exist, where \( D_{\perp}\) and \( D_{T}\) are invariant and anti-invariant submanifolds of a quasi-Sasakian manifold \(\bar{M}\), respectively. Moreover we have obtained characterization results for CR-submanifolds to be locally CR-warped products.
Keywords
K. Arslan, R. Ezentas, I. Mihai and C. Murathan, “Contact CR-warped product submanifolds in Kenmotsu space forms”, J. Korean Math. Soc., vol. 42, no. 5, pp. 1101–1110, 2005.
A. Bejancu, “CR-submanifold of a Kaehler manifold. I”, Proc. Amer. Math. Soc., vol. 69, no. 1, 135–142, 1978.
A. Bejancu and N. Papaghiuc, “Semi-invariant submanifolds of a Sasakian manifold.”, An. ÅžtiinÅ£. Univ. “Al. I. Cuza” IaÅŸi SecÅ£. I a Mat. (N.S.), vol. 27, no. 1, pp. 163–170, 1981.
T.-Q. Binh and A. De, “On contact CR-warped product submanifolds of a quasi-Sasakian manifold”, Publ. Math. Debrecen, vol. 84, no. 1-2, pp. 123–137, 2014.
R. L. Bishop and B. O‘Neill, “Manifolds of negative curvature”, Trans. Amer. Math. Soc., vol. 145, pp. 1–49, 1969.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Berlin-New York: Springer-Verlag, 1976.
C. Calin, “Contributions to geometry of CR-submanifold”, PhD Thesis, University of IaÅŸi, IaÅŸi, Romania, 1998.
B.-Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds”, Monatsh. Math., vol. 133, no. 3, pp. 177–195, 2001.
I. Hasegawa and I. Mihai, “Contact CR-warped product submanifolds in Sasakian manifolds”, Geom. Dedicata, vol. 102, pp. 143–150, 2003.
S. Hiepko, “Eine innere Kennzeichnung der verzerrten Produkte”, Math. Ann., vol. 241, no. 3, pp. 209–215, 1979.
M.-I. Munteanu, “A note on doubly warped product contact CR-submanifolds in trans-Sasakian manifolds”, Acta Math. Hungar., vol. 116, no. 1-2, pp. 121–126, 2007.
K. Yano, “On structure defined by a tensor field f of type (1, 1) satisfying f^3 + f = 0”, Tensor (N.S.), vol. 14, pp. 99–109, 1963.
K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, vol. 3, Singapore: World Scientific Publishing Co., 1984.
Similar Articles
- Roberto Dieci, Gian-Italo Bishi, Laura Gardini, Routes to Complexity in a Macroeconomic Model Described by a Noninvertible Triangular Map , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Cristián Mallol, A propos des algèbres pondérables , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Fortune Massamba, Lightlike geometry of leaves in indefinite Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Venkatesha, Divyashree G., Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Gian-Italo Bischi, Michael Kopel, Long Run Evolution, Path Dependence and Global Properties of Dynamic Games: A Tutorial , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Sunil Kumar Yadav, Abhishek Kushwaha, Dhruwa Narain, Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Zvonko Cerin, Squares in Euler triples from Fibonacci and Lucas numbers , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.