Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold
-
Shamsur Rahman
shamsur@rediffmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100105Abstract
The present paper deals with a study of warped product submanifolds of quasi-Sasakian manifolds and warped product CR-submanifolds of quasi-Sasakian manifolds. We have shown that the warped product of the type \( M = D_{\perp}{\times}{_{y}}{D}_{T}\) does not exist, where \( D_{\perp}\) and \( D_{T}\) are invariant and anti-invariant submanifolds of a quasi-Sasakian manifold \(\bar{M}\), respectively. Moreover we have obtained characterization results for CR-submanifolds to be locally CR-warped products.
Keywords
K. Arslan, R. Ezentas, I. Mihai and C. Murathan, “Contact CR-warped product submanifolds in Kenmotsu space forms”, J. Korean Math. Soc., vol. 42, no. 5, pp. 1101–1110, 2005.
A. Bejancu, “CR-submanifold of a Kaehler manifold. I”, Proc. Amer. Math. Soc., vol. 69, no. 1, 135–142, 1978.
A. Bejancu and N. Papaghiuc, “Semi-invariant submanifolds of a Sasakian manifold.”, An. ÅžtiinÅ£. Univ. “Al. I. Cuza” IaÅŸi SecÅ£. I a Mat. (N.S.), vol. 27, no. 1, pp. 163–170, 1981.
T.-Q. Binh and A. De, “On contact CR-warped product submanifolds of a quasi-Sasakian manifold”, Publ. Math. Debrecen, vol. 84, no. 1-2, pp. 123–137, 2014.
R. L. Bishop and B. O‘Neill, “Manifolds of negative curvature”, Trans. Amer. Math. Soc., vol. 145, pp. 1–49, 1969.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Berlin-New York: Springer-Verlag, 1976.
C. Calin, “Contributions to geometry of CR-submanifold”, PhD Thesis, University of IaÅŸi, IaÅŸi, Romania, 1998.
B.-Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds”, Monatsh. Math., vol. 133, no. 3, pp. 177–195, 2001.
I. Hasegawa and I. Mihai, “Contact CR-warped product submanifolds in Sasakian manifolds”, Geom. Dedicata, vol. 102, pp. 143–150, 2003.
S. Hiepko, “Eine innere Kennzeichnung der verzerrten Produkte”, Math. Ann., vol. 241, no. 3, pp. 209–215, 1979.
M.-I. Munteanu, “A note on doubly warped product contact CR-submanifolds in trans-Sasakian manifolds”, Acta Math. Hungar., vol. 116, no. 1-2, pp. 121–126, 2007.
K. Yano, “On structure defined by a tensor field f of type (1, 1) satisfying f^3 + f = 0”, Tensor (N.S.), vol. 14, pp. 99–109, 1963.
K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, vol. 3, Singapore: World Scientific Publishing Co., 1984.
Similar Articles
- Zvonko Cerin, Squares in Euler triples from Fibonacci and Lucas numbers , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Augustin Banyaga, Erratum to “on the group of strong symplectic homeomorphisms” , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- E. A. Eljamal, M. Darus, Majorization for certain classes of analytic functions defined by a new operator , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.