Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold
-
Shamsur Rahman
shamsur@rediffmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100105Abstract
The present paper deals with a study of warped product submanifolds of quasi-Sasakian manifolds and warped product CR-submanifolds of quasi-Sasakian manifolds. We have shown that the warped product of the type \( M = D_{\perp}{\times}{_{y}}{D}_{T}\) does not exist, where \( D_{\perp}\) and \( D_{T}\) are invariant and anti-invariant submanifolds of a quasi-Sasakian manifold \(\bar{M}\), respectively. Moreover we have obtained characterization results for CR-submanifolds to be locally CR-warped products.
Keywords
K. Arslan, R. Ezentas, I. Mihai and C. Murathan, “Contact CR-warped product submanifolds in Kenmotsu space forms”, J. Korean Math. Soc., vol. 42, no. 5, pp. 1101–1110, 2005.
A. Bejancu, “CR-submanifold of a Kaehler manifold. I”, Proc. Amer. Math. Soc., vol. 69, no. 1, 135–142, 1978.
A. Bejancu and N. Papaghiuc, “Semi-invariant submanifolds of a Sasakian manifold.”, An. ÅžtiinÅ£. Univ. “Al. I. Cuza” IaÅŸi SecÅ£. I a Mat. (N.S.), vol. 27, no. 1, pp. 163–170, 1981.
T.-Q. Binh and A. De, “On contact CR-warped product submanifolds of a quasi-Sasakian manifold”, Publ. Math. Debrecen, vol. 84, no. 1-2, pp. 123–137, 2014.
R. L. Bishop and B. O‘Neill, “Manifolds of negative curvature”, Trans. Amer. Math. Soc., vol. 145, pp. 1–49, 1969.
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Berlin-New York: Springer-Verlag, 1976.
C. Calin, “Contributions to geometry of CR-submanifold”, PhD Thesis, University of IaÅŸi, IaÅŸi, Romania, 1998.
B.-Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds”, Monatsh. Math., vol. 133, no. 3, pp. 177–195, 2001.
I. Hasegawa and I. Mihai, “Contact CR-warped product submanifolds in Sasakian manifolds”, Geom. Dedicata, vol. 102, pp. 143–150, 2003.
S. Hiepko, “Eine innere Kennzeichnung der verzerrten Produkte”, Math. Ann., vol. 241, no. 3, pp. 209–215, 1979.
M.-I. Munteanu, “A note on doubly warped product contact CR-submanifolds in trans-Sasakian manifolds”, Acta Math. Hungar., vol. 116, no. 1-2, pp. 121–126, 2007.
K. Yano, “On structure defined by a tensor field f of type (1, 1) satisfying f^3 + f = 0”, Tensor (N.S.), vol. 14, pp. 99–109, 1963.
K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, vol. 3, Singapore: World Scientific Publishing Co., 1984.
Similar Articles
- Indranil Biswas, ðº-bundles over a projective manifold , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- E. A. Eljamal, M. Darus, Majorization for certain classes of analytic functions defined by a new operator , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Laurent Amour, Jérémy Faupin, The confined hydrogenoid ion in non-relativistic quantum electrodynamics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.