Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line
-
Meriem Djibaoui
djibaouimeriem@gmail.com
-
Toufik Moussaoui
toufik.moussaoui@g.ens-kouba.dz
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0227Abstract
In this paper, the existence of solutions for a second-order impulsive differential equation with a parameter on the half-line is investigated. Applying Lax-Milgram theorem, we deal with a linear Dirichlet impulsive problem, while the non-linear case is established by using standard results of critical point theory.
Keywords
L. Bai and J. J. Nieto, “Variational approach to differential equations with not instantaneous impulses”, Appl. Math. Lett., vol. 73, pp. 44–48, 2017.
V. Barutello, R. Ortega and G. Verzini, “Regularized variational principles for the perturbed Kepler problem”, Adv. Math., vol. 383, Paper No. 107694, 64 pages, 2021.
D. Bouafia and T. Moussaoui, “Existence results for a sublinear second order Dirichlet boundary value problem on the half-line”, Opuscula Math., vol. 40, no. 5, pp. 537–548, 2020.
H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011.
M. Chipot, Elements of nonlinear analysis, Birkhäuser Advanced Texts: Basler Lehrbücher, Basel: Birkhäuser Verlag, 2000.
O. Frites, T. Moussaoui and D. O‘Regan, “Existence of solutions for a variational inequality on the half-line”, Bull. Iranian Math. Soc., vol. 43, no. 1, pp. 223–237, 2017.
J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Berlin: Springer-Verlag, 1989.
J. J. Nieto and D. O‘Regan, “Variational approach to impulsive differential equations”, Non- linear Anal. Real World Appl., vol. 10, no. 2, pp. 680–690, 2009.
J. J. Nieto and J. M. Uzal, “Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure”, J. Fixed Point Theory Appl., vol. 22, no. 1, Paper No. 19, 13 pages, 2020.
Y. Wei, “Existence and uniqueness of solutions for a second-order delay differential equation boundary value problem on the half-line”, Bound. Value Probl., Art. ID 752827, 14 pages, 2008.
Most read articles by the same author(s)
- Toufik Moussaoui, Radu Precup, Positive Solutions for Elliptic Boundary Value Problems with a Harnack-Like Property , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
Similar Articles
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Rigoberto Medina, Asymptotic behavior of the solution of a nonlinear differential equation , CUBO, A Mathematical Journal: No. 6 (1990): CUBO, Revista de Matemática
- Stanislas Ouaro, Weak and entropy solutions for a class of nonlinear inhomogeneous Neumann boundary value problem with variable exponent , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Aurelian Cernea, On the solution set of a fractional integro-differential inclusion involving Caputo-Katugampola derivative , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- J. Blot, D. Pennequin, Gaston M. N‘Gu´er´ekata, Existence and Uniqueness of Pseudo Almost Automorphic Solutions to Some Classes of Partial Evolution Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- l. M. Proudnikov, Construction of a stabilizing control and solution to a problem about the center and the focus for differential systems with a polynomial part on the right side , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Binayak Choudhury, Subhajit Kundu, Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.











