Ideal based graph structures for commutative rings
-
M. I. Jinnah
jinnahmi@yahoo.co.in
-
Shine C. Mathew
shinecmathew@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0333Abstract
We introduce a graph structure \(\Gamma^{\ast}_2(R)\) for commutative rings with unity. We study some of the properties of the graph \(\Gamma^{\ast}_2(R)\). Also we study some parameters of \(\Gamma^{\ast}_2(R)\) and find rings for which \(\Gamma^{\ast}_2(R)\) is split.
Keywords
D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, vol. 217, no. 2, pp. 434–447, 1999.
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Reading, MA: Addison-Wesley, 1969.
I. Beck, “Coloring of commutative rings”, J. Algebra, vol. 116, no. 1, pp. 208–226, 1988.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208, New York: Marcel Dekker, Inc., 1998.
M. I. Jinnah and S. C. Mathew, “On the ideal graph of a commutative ring”, Algebras Groups Geom., vol. 26, no. 2, pp. 125–131, 2009.
M. I. Jinnah and S. C. Mathew, “When is the comaximal graph split?”, Comm. Algebra, vol. 40, no. 7, pp. 2400–2404, 2012.
M. I. Jinnah and S. C. Mathew, “On rings whose Beck graph is split”, Beitr. Algebra Geom., vol. 56, no. 2, pp. 379–385, 2015.
S. C. Mathew, “A study on some graphs associated with a commutative ring”, Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, 2011.
K. R. Parthasarathy, Basic graph theory, New Delhi, New York: Tata-McGraw Hil, 1994.
C. Thomas, “A study of some problems in algebraic graph theory - graphs arising from rings”, Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, 2004.
Similar Articles
- Sóstenes Lins, Valdenberg Silva, On Maps with a Single Zigzag , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Laszlo Kapolyi, On the Dynamism of Harvesting Biological Resources , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Seppo Heikkila, Fixed Point Results for Set-Valued and Single-Valued Mappings in Ordered Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Thomas Blesgen, Two-Phase Structures as Singular Limit of a one-dimensional Discrete Model , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Jiri Rosický, Injectivity and accessible categories , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Saeid Jafari, Raja Mohammad Latif, Seithuti P. Moshokoa, A note on generalized topological spaces and preorder , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- B. K. Tyagi, Sheetal Luthra, Harsh V. S. Chauhan, On New Types of Sets Via γ-open Sets in (ð‘Ž)Topological Spaces , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- E. Ballico, Postulation of general unions of lines and +lines in positive characteristic , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.