Ideal based graph structures for commutative rings
-
M. I. Jinnah
jinnahmi@yahoo.co.in
-
Shine C. Mathew
shinecmathew@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0333Abstract
We introduce a graph structure \(\Gamma^{\ast}_2(R)\) for commutative rings with unity. We study some of the properties of the graph \(\Gamma^{\ast}_2(R)\). Also we study some parameters of \(\Gamma^{\ast}_2(R)\) and find rings for which \(\Gamma^{\ast}_2(R)\) is split.
Keywords
D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, vol. 217, no. 2, pp. 434–447, 1999.
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Reading, MA: Addison-Wesley, 1969.
I. Beck, “Coloring of commutative rings”, J. Algebra, vol. 116, no. 1, pp. 208–226, 1988.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208, New York: Marcel Dekker, Inc., 1998.
M. I. Jinnah and S. C. Mathew, “On the ideal graph of a commutative ring”, Algebras Groups Geom., vol. 26, no. 2, pp. 125–131, 2009.
M. I. Jinnah and S. C. Mathew, “When is the comaximal graph split?”, Comm. Algebra, vol. 40, no. 7, pp. 2400–2404, 2012.
M. I. Jinnah and S. C. Mathew, “On rings whose Beck graph is split”, Beitr. Algebra Geom., vol. 56, no. 2, pp. 379–385, 2015.
S. C. Mathew, “A study on some graphs associated with a commutative ring”, Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, 2011.
K. R. Parthasarathy, Basic graph theory, New Delhi, New York: Tata-McGraw Hil, 1994.
C. Thomas, “A study of some problems in algebraic graph theory - graphs arising from rings”, Ph.D. Thesis, University of Kerala, Thiruvananthapuram, India, 2004.
Similar Articles
- Bernard Helffer, Xing-Bin Pan, On Some Spectral Problems and Asymptotic Limits Occuring in the Analysis of Liquid Crystals , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Sushanta Kumar Mohanta, Common Fixed Point Results in C∗-Algebra Valued b-Metric Spaces Via Digraphs , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Claus Bauer, A new solution algorithm for skip-free processes to the left , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: In Press
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- V. Renukadevi, On subsets of ideal topological spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Donal O‘Regan, Reza Saadati, â„’ -Random and Fuzzy Normed Spaces and Classical Theory , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.